Neumünder

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Neumünder
Bei den Neumündern wird der Urmund (Blastoporus) zum After (Anus), die Mundöffnung wird neu gebildet.

Bei den Neumündern wird der Urmund (Blastoporus) zum After (Anus), die Mundöffnung wird neu gebildet.

Systematik
ohne Rang: Opisthokonta
ohne Rang: Holozoa
ohne Rang: Vielzellige Tiere (Metazoa)
ohne Rang: Gewebetiere (Eumetazoa)
ohne Rang: Bilateria
Überstamm: Neumünder
Wissenschaftlicher Name
Deuterostomia
Grobben, 1908
Stämme

Die Neumünder (Deuterostomia) stellen einen Überstamm der Zweiseitentiere (Bilateria), von denen die Rückenseitentiere (Chordatiere, Chordata) (darunter der Mensch) und die Stachelhäuter (Echinodermata) die hauptsächlichen Taxa sind. Eines der zwei kennzeichnenden gemeinsamen Merkmale der Deuterostomia ist die weitere Entwicklung des Urmundes in der Embryonalentwicklung. Hier wird im Verlauf der Gastrulation der Urmund zum After und der Mund entsteht neu (Deuterostomie). Das zweite Merkmal ist die dorsale (rückenseitige) Lage des Zentralnervensystems (ZNS). Bei den übrigen Zweiseitentieren, den Urmündern (Protostomia), wird hingegen der Urmund zum Mund und der After bricht sekundär durch; das ZNS liegt ventral (bauchseits).[1]

Begriff[Bearbeiten | Quelltext bearbeiten]

Das neunzehnte Jahrhundert sah den Beginn der Entwicklungsbiologie. Frühe embryonale Entwicklungsstadien wurden unter dem Mikroskop genau beobachtet und beschrieben. Als besonders wegweisend und einflussreich[2] erwiesen sich die Leistungen des deutsch-baltischen Naturforschers Karl Ernst von Baer[3] und des deutschen Zoologen Ernst Haeckel.[4] Die Naturwissenschaftler erkannten, dass die Anlage des Verdauungstrakts unter den dreikeimblättrigen Tieren auf zwei unterschiedliche Weisen erfolgt. Einmal wird der Urmund zum späteren Mund, der zukünftige Darmtrakt durchwächst den Embryo und der After bricht abschließend durch. Ein anderes Mal wird der Urmund zum späteren After, der zukünftige Darmtrakt durchwächst den Embryo und der Mund bricht abschließend durch.

Dieser entwicklungsbiologische Unterschied wurde im Jahr 1875 erstmalig vom britischen Biologen Thomas Henry Huxley evolutionsbiologisch gedeutet und gleich zweifach veröffentlicht.[5][6] Huxley sah in der Anlageweise der Verdauungstraktes ein Merkmal, das von sehr fernen Vorfahren entwickelt worden war und seitdem immer weiter durch die sich diversifizierende Nachkommenschaft vererbt wurde. Demzufolge stammten alle heute lebenden dreikeimblättrigen Tiere entweder von einem Vorfahren ab, dessen embryonaler Urmund zum späteren Mund wurde. Oder aber sie stammten von einem Vorfahren ab, dessen embryonaler Urmund zum späteren After wurde. Huxley nannte die erste Tiergruppe die Archaeostomata und die zweite Tiergruppe die Deuterostomata.[7][8]

Beide Begriffe wurden schon im nächsten Jahr vom irischen Anatomen Alexander MacAlister in seinem Lehrbuch einer breiteren Öffentlichkeit vorgestellt.[9] Allerdings blieb die Kunde von den Archaeostomata und Deuterostomata auf das englischsprachige Fachpublikum beschränkt. Die Wörter konnten sich nicht im deutschen Sprachgebiet etablieren. Darum prägte der österreichische Zoologe Berthold Hatschek zwölf Jahre später mit dem neuen Wort Zygoneura einen eigenen Begriff für jene Tiergruppe, die Huxley vormals schon als Archaeostomata bezeichnet hatte. Auf der anderen Seite bot Hatschek aber kein Synonym für Huxleys Deuterostomata an.[10]

Diese fachsprachliche Lücke wurde erst im Jahr 1908 vom österreichischen Zoologen Karl Grobben geschlossen. Für seine Abhandlung Die systematische Einteilung des Tierreiches übernahm Grobben anfänglich den Begriff der Zygoneura von Berthold Hatschek, gesellte ihm aber im Laufe des Texts sein eigenes Synonym Protostomia zu. Und den Protostomia stellte er jene Gruppe von dreikeimblättrigen Tieren gegenüber, deren Urmund zum späteren After wird. Diese Gruppe nannte Grobben nun Deuterostomia.[11]

Dreiunddreißig Jahre nach Huxleys Deuterostomata hatte Karl Grobben für den gleichen Begriffsinhalt ein fast gleich lautendes Wort geprägt. Während des zwanzigsten Jahrhunderts setzte sich Grobbens Begriffspaar in der Entwicklungsbiologie und in der Evolutionsbiologie durch. Berthold Hatscheks Zygoneura gerieten genauso in Vergessenheit wie Thomas Henry Huxleys Archaeostomata und eben auch wie seine Deuterostomata. Die biologische Fachsprache benutzt heute normalerweise nur noch die Begriffe Protostomia und Deuterostomia.

„Neumündigkeit“ als ordnendes Merkmal[Bearbeiten | Quelltext bearbeiten]

Nachdem die Neumündigkeit (Deuterostomie) entdeckt worden war, diente sie dazu, die sehr verschieden erscheinenden Tiergruppen der Chordatiere (Chordata), Kiemenlochtiere (Hemichordata) und Stachelhäuter (Echinodermata) zu einer gemeinsamen Abstammungsgemeinschaft zusammenzuführen. Die Abstammungsgemeinschaft erhielt den Namen „Neumünder“ (Neumundtiere, Zweitmünder) oder Deuterostomia (von altgr. δεύτερο- deutero ‚zweit-‘ und στόμα stoma ‚Mund‘).

Jedoch gibt es weitere Tiere, die ebenfalls deuterostome Embryonalentwicklungen zeigen. Neumündigkeit kann bei Pfeilwürmern (Chaetognatha) beobachtet werden, sowie bei einigen Kranzfühlern (Lophophorata) und manchen Saitenwürmern (Nematomorpha) und Gliederfüßern (Arthropoda). Ob die Tiere zu den Deuterostomia zählen sollten, war viele Jahrzehnte umstritten. Mit Hilfe molekularbiologischer Verwandtschaftsforschung (Phylogenomik) wurde in dieser Frage große Klarheit erzielt. Demnach bilden Chordatiere, Kiemenlochtiere und Stachelhäuter tatsächlich eine Abstammungsgemeinschaft. Die restlichen genannten Tiergruppen gehören nicht dazu. Ihre Deuterostomien wurden stattdessen jeweils unabhängig voneinander konvergent evolviert.

Systematik[Bearbeiten | Quelltext bearbeiten]

Äußere Systematik[Bearbeiten | Quelltext bearbeiten]

Die Deuterostomia stellen eine Großgruppe innerhalb des Systems der vielzelligen Tiere. Ihr Schwestertaxon sind die Urmundtiere (Protostomia). Mit ihnen bilden sie die Abstammungsgemeinschaft der Nierentiere (Nephrozoa). Die Nierentiere werden mit den Xenacoelomorpha zusammengefasst zu den Zweiseitentieren (Bilateria).[12] Die Zweiseitentiere können mit Schwämmen (Porifera), Plattentieren (Placozoa), Rippenquallen (Ctenophora) und Nesseltieren (Cnidaria) als vielzellige Tiere (Metazoa) gruppiert werden.[13] Die vielzelligen Tiere sind das Schwestertaxon der Kragengeißeltierchen (Choanomonada). Gelegentlich werden vielzellige Tiere und Kragengeißeltierchen gemeinsam als Tiere (Animalia) angesprochen.

Äußere Systematik der Deuterostomia (Neumünder)
  • Animalia (Tiere)
    • Choanomonada (Kragengeißeltierchen)
    • Metazoa (mehrzellige Tiere)
      • Porifera (Schwämme)
      • Placozoa (Plattentiere)
      • Ctenophora (Rippenquallen)
      • Cnidaria (Nesseltiere)
      • Bilateria (Zweiseitentiere)
        • Xenacoelomorpha
        • Nephrozoa (Nierentiere)
          • Protostomia (Urmundtiere)
          • Deuterostomia (Neumundtiere)

Innere Systematik[Bearbeiten | Quelltext bearbeiten]

Mehrere Tiergruppen werden den Neumündern zugeordnet. Fünf von ihnen existieren noch immer, sind also rezent. Taxonomisch wird jede als Stamm oder Unterstamm betrachtet. Die fünf Gruppen können wegen bestimmter Gemeinsamkeiten einem Paar noch umfassenderer Abstammungsgemeinschaften zugeteilt werden. Aufgrund phylogenomischer und vergleichend-entwicklungsbiologischer Erkenntnisse werden die zwei Stämme der Ambulacraria den drei Stämmen der Rückensaitentiere gegenübergestellt.[14]

Großgruppen der rezenten Deuterostomia (Neumünder)

Das System der rezenten Neumünder bringt allerdings nur eine lückenhafte Vorstellung von der Vielfalt der Tiergruppe. Denn es berücksichtigt nicht, dass in vergangenen Perioden der Erdgeschichte weitere Neumünder-Zweige evolviert waren. Jene Zweige sind heute nur noch aus Fossilien bekannt. Sie können dennoch sinnvoll in das vorhandene System eingebaut werden. Allerdings bleiben die Positionen der ausgestorbenen Vetulicolia und Vetulocystida unsicher. Derzeit werden sie als eigener Neumünder-Zweig auf gleicher Stufe neben die Gruppen der Stachelhäuter und der Rückensaitentiere gestellt.[15]

Systematik der rezenten und fossilen Deuterostomia
 Deuterostomia[16] 
 Ambulacraria 
 Echinodermata 

Echinodermata bilateraliaa


   

Echinodermata asymmetricab


 Echinodermata radiatac 

triradiärsymmetrische Echinodermatad


 pentaradiärsymmetrische Echinodermatae 

Crinozoaf


   

Eleutherozoag






 Hemichordata 

Enteropneusta


   

Pterobranchia




   
 Chordata 

Leptocardiah,i


 Olfactores 
 Cristozoaj 

Myllokunmingiidah,k


   

Pikaiidaeh,l


   

Conodontophorah,m


   

Craniatan





   

Tunicata





   

Vetulicolia †


   

Vetulocystida †




a: Zu den spiegelsymmetrischen Stachelhäutern gehörte zum Beispiel die ausgestorbene Gattung Courtessolea.[17] Echinodermata bilateralia zählten zum Paraphylum der Homalozoa.[18]
b: Zu den unsymmetrischen Stachelhäutern gehörten zum Beispiel die ausgestorbenen Gattungen Asturicystis und Castericystis.[17] Echinodermata asymmetrica zählten zum Paraphylum der Homalozoa.[18]
c: Die Gruppe der radiärsymmetrischen Stachelhäuter.[19]
d: Echinodermata radiata mit einer dreizähligen Radiärsymmetrie. Zu ihnen gehörte die ausgestorbene Gruppe der Helicoplacoidea.[17]
e: Echinodermata radiata mit einer fünfzähligen Radiärsymmetrie. Zu ihnen gehörten die ausgestorbenen Gattungen Helicocystis und Camptostroma.[17] Außerdem zählen die Gruppen der Crinozoa und der Eleutherozoa ebenfalls zu den pentaradialsymmetrische Echinodermata, in denen sich sämtliche rezente Stachelhäuter finden.[20]
f: Zu den Crinozoa gehörten die ausgestorbenen Gruppen der Eocrinoidea, Paracrinoidea, Cystoidea, Blastoidea und Parablastoidea.[21] Außerdem zählt die Gruppe der Crinoidea ebenfalls zu den Crinozoa, in der sich sämtliche rezenten Vertreter dieser Stachelhäuter finden. Es handelt sich um Seelilien und Haarsterne aus der Unterklasse der Articulata.[22]
g: Zu den Eleutherozoa gehören die rezenten Gruppen der Echinozoa mit Seewalzen (Holothuroidea) und Seeigeln (Echinoidea) und der Asterozoa mit Seesternen (Asteroidea) und Schlangensternen (Ophiuroidea).[23]
h: Die Tiere gehören zu den Schädellosen (Acrania). Das sind Lebewesen ohne Schädel und mit einer Rückensaite, die vom Schwanzende bis in die Kopfregion reicht. Unter Einbezug der fossilen Neumünder werden die Schädellosen zu einem Paraphylum.
i: Zur Klasse der schädellosen Lanzettfischchen (Leptocardia) gehören nur die drei Gattungen rezenter Lanzettfischchen (Asymmetron, Epigonichthys, Branchiostoma). Zwar waren der Klasse zusätzlich schon vier fossile Gattungen zugeordnet worden, alle vier konnten jedoch aus unterschiedlichen Gründen diese Zuordnung nicht behalten.[24]
j: Die Cristozoa umfassen alle Tiere mit Neuralleisten-Bildungen.[25]
k: Zu den Myllokunmingiida gehören eine Reihe von Gattungen fossiler Schädelloser aus dem unteren und mittleren Kambrium. Sie wurden in Gesteinen der Maotianshan-Schiefer und der Burgess-Schiefer gefunden: Haikouichthys[26] (= Myllokunmingia[27]), Metaspriggina,[28] Zhongjianichthys.[29] Die taxonomische Zuordnung der Gattung Yunnanozoon[30] (= Cathayamyrus[31][32] = Zhongxiniscus[33], = Haikouella[34][35]) ist an dieser Stelle umstritten.[36]
l: Die einzige bekannte Gattung der Familie der schädellosen Pikaiidae heißt Pikaia.[37]
m: Die schädellosen Conodontentiere (Conodontophora) sind fast ausschließlich durch ihre fossilen Mundwerkzeuge bekannt. Die wenigen Funde mit erhalten gebliebener Weichteilanatomie legen aber eine enge Verwandtschaft zu den Schädeltieren (Craniata) nahe.[38]
n: Zur Gruppe der Schädeltiere (Craniata) gehörte das ausgestorbene Paraphylum der Schalenhäuter (Ostracodermi) neben den rezenten Gruppen der Rundmäuler (Cyclostomata) und der Kiefermäuler (Gnathostomata).[39]
o: Die älteste fossile Gattung der Manteltiere (Tunicata) heißt Shankouclava und stammt aus dem unteren Kambrium der Maotianshan-Schiefer.[40] Die dort ebenfalls gefundene Gattung Cheungkongella (= Phlogites) wird inzwischen nicht mehr als Manteltier angesehen, sondern bei den Kranzfühlern (Lophophorata) eingeordnet.[41]
p: Die Vetulicolia sind eine Tiergruppe aus dem Kambrium. Sie wird derzeit als Schwestertaxon der Tunicata betrachtet,[42] obwohl diese taxonomische Einordnung nicht ohne Restzweifel erfolgt.[43]

In der dargestellten Systematik werden bestimmte Gruppenbezeichnungen aus unterschiedlichen Gründen nicht mehr verwendet:

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Deuterostomia – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Hynek Burda: Allgemeine Zoologie. Verlag Eugen Ulmer, Stuttgart 2005, ISBN 3-8001-2838-1, S. 55.
  2. Thomas Henry Huxley: On the classification of the animal kingdom. In: The Journal of the Linnean Society. Zoology. Band 12, 1875, doi:10.1111/j.1096-3642.1875.tb02582.x, S. 200, 207.
  3. Karl Ernst von Baer: Über Entwicklungsgeschichte der Thiere • Erster Theil. Verlag Gebrüder Bornträger, Königsberg, 1828.
  4. Ernst Haeckel: Die Biologie der Kalkschwämme. Georg Reimer Verlag, Berlin 1872, S. 328–339 (Digitalisat).
  5. Thomas Henry Huxley: On the classification of the animal kingdom. In: The Journal of the Linnean Society. Zoology. Band 12, 1875, doi:10.1111/j.1096-3642.1875.tb02582.x, S. 199–226.
  6. Thomas Henry Huxley: On the classification of the animal kingdom. In: The American Naturalist. Band 09, 1875, doi:10.1086/271442, S. 65–70.
  7. Thomas Henry Huxley: On the classification of the animal kingdom. In: The Journal of the Linnean Society. Zoology. Band 12, 1875, doi:10.1111/j.1096-3642.1875.tb02582.x, S. 207.
  8. Thomas Henry Huxley: On the classification of the animal kingdom. In: The American Naturalist. Band 09, 1875, doi:10.1086/271442, S. 67.
  9. Alexander MacAlister: An Introduction to Animal Morphology and Systematic Zoology • Part I. Publishers Longmans, Green and Co., London, 1876. S. 48 (Digitalisat).
  10. Berthold Hatschek: Lehrbuch der Zoologie • Erste Lieferung. Gustav Fischer Verlag, Jena, 1888, S. 41.
  11. Karl Grobben: Die systematische Einteilung des Tierreiches. In: Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien. Band 58, 1908, S. 496–497 (Digitalisat).
  12. Cannon Johanna Taylor, Cossermelli Vellutini Bruno, Smith Julian, Ronquist Fredrik, Jondelius, Ulf, Hejnol Andreas: Xenacoelomorpha is the sister group to Nephrozoa. In: Nature. Nr. 530, 2016, doi:10.1038/nature16520, S. 89–93.
  13. Bert Hobmayer, Reinhard Rieger: Metazoa. In: Wilfried Westheide, Gunde Rieger (Hg.): Spezielle Zoologie • Teil 1. Springer-Verlag, Berlin/Heidelberg, 2013, ISBN 978-3-642-34695-8, S. 61.
  14. Alfred Goldschmid: Deuterostomia. In: Wilfried Westheide, Gunde Rieger (Hg.): Spezielle Zoologie • Teil 1. Springer-Verlag, Berlin/Heidelberg, 2013, ISBN 978-3-642-34695-8, S. 716.
  15. Jian Han, Simon Conway Morris, Qiang Ou, Degan Shu, Hai Huang: Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). In: Nature. Band 542, 2017, doi:10.1038/nature21072, S. 230.
  16. Systematik nach (1a) Diego C. García-Bellido, Michael S. Y. Lee, Gregory D. Edgecombe, James B. Jago, James G. Gehling, John R. Paterson: A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group. In: BMC Evolutionary Biology. Nr. 14, 2014, doi:10.1186/s12862-014-0214-z, S. 8, aktualisiert mit (1b) Jian Han, Simon Conway Morris, Qiang Ou, Degan Shu, Hai Huang: Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). In: Nature. Band 542, 2017, doi:10.1038/nature21072, S. 230. (2) Philip C. J. Donoghue, Joseph N. Keating: Early vertebrate evolution. In: Palaeontology. Nr. 57, 2014, doi:10.1111/pala.12125, S. 880. Systematik der Echinodermata vereinfacht nach (3) Andrew B. Smith, Samuel Zamora: Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. In: Proceedings of the Royal Society B. Band 280, 2013, doi:10.1098/rspb.2013.1197, S. 5. Systematik der Hemichordata nach (4) Johanna T. Cannon, Kevin M. Kocot, Damien S. Waits, David A. Weese, Billie J. Swalla, Scott R. Santos, Kenneth M. Halanych: Phylogenomic Resolution of the Hemichordate and Echinoderm Clade. In: Current Biology. Band 24, 2014, doi:10.1016/j.cub.2014.10.016, S. 2829.
  17. a b c d Andrew B. Smith, Samuel Zamora: Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. In: Proceedings of the Royal Society B. Band 280, 2013, doi:10.1098/rspb.2013.1197, S. 5.
  18. a b Georges Ubaghs: Early Paleozoic Echinoderms. In: Annual Review of Earth and Planetary Sciences. Band 3, 1975, doi:10.1146/annurev.ea.03.050175.000455, S. 95.
  19. Georges Ubaghs: Early Paleozoic Echinoderms. In: Annual Review of Earth and Planetary Sciences. Band 3, 1975, doi:10.1146/annurev.ea.03.050175.000455, S. 96.
  20. Andrew B. Smith, Samuel Zamora: Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. In: Proceedings of the Royal Society B. Band 280, 2013, doi:10.1098/rspb.2013.1197, S. 1.
  21. Vergleiche (1) Georges Ubaghs: General Characters of Echinodermata. In: Raymond C. Moore (Hg.): Treatise of Invertebrate Paleontology – Part S • Echinodermata 1. University of Kansas and Geological Society of America, Lawrence (Kansas), 1989, ISBN 0-8137-3020-1, S. 54. mit (2) Arno Hermann Müller: Lehrbuch der Paläozoologie – Band II, Teil 3. Gustav Fischer Verlag, Jena, 1989, ISBN 3-334-00165-2, S. 314.
  22. Greg W. Rouse, Lars S. Jermiin, Nerida G. Wilson, Igor Eeckhaut, Deborah Lanterbecq, Tatsuo Oji, Craig M. Young, Teena Browning, Paula Cisternas, Lauren E. Helgen, Michelle Stuckey, Charles G. Messing: Fixed, free, and fixed: The fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian–Triassic origin. In: Molecular Phylogenetics and Evolution. Band 66, 2013, doi:10.1016/j.ympev.2012.09.018, S. 161, 171, 178.
  23. Maximilian J. Telford, Christopher J. Lowe, Christopher B. Cameron, Olga Ortega-Martinez, Jochanan Aronowicz, Paola Oliveri, Richard R. Copley: Phylogenomic analysis of echinoderm class relationships supports Asterozoa. In: Proceedings of the Royal Society B. Band 281, 2014, doi:10.1098/rspb.2014.0479, S. 6
  24. Jun-Yuan Chen: Early crest animals and the insight they provide into the evolutionary origin of craniates. In: Genesis. Nr. 46, 2008, doi:10.1002/dvg.20445, S. 625, 627-628.
  25. Jun-Yuan Chen: Early crest animals and the insight they provide into the evolutionary origin of craniates. In: Genesis. Nr. 46, 2008, doi:10.1002/dvg.20445, S. 623.
  26. Degan Shu: A paleontological perspective of vertebrate origin. In: Chinese Science Bulletin. Nr. 48, 2003, doi:10.1007/BF03187041, S. 725.
  27. Hou Xian-gang, Richard J. Aldridge, David J. Siveter, Derek J. Siveter, and Feng Xiang-hong: New evidence on the anatomy and phylogeny of the earliest vertebrates. I. Proceedings of the Royal Society B: Biological Sciences. Nr. 269, 2002, doi:10.1098/rspb.2002.2104, S. 1865.
  28. Simon Conway Morris, Jean-Bernard Caron: A primitive fish from the Cambrian of North America. In: Nature. Nr. 512, 2014, doi:10.1038/nature13414, S. 419.
  29. Degan Shu: A paleontological perspective of vertebrate origin. In: Chinese Science Bulletin. Nr. 48, 2003, doi:10.1007/BF03187041, S. 727.
  30. Jun-Yuan Chen: Early crest animals and the insight they provide into the evolutionary origin of craniates. In: Genesis. Nr. 46, 2008, doi:10.1002/dvg.20445, S. 625.
  31. Jun-Yuan Chen: Early crest animals and the insight they provide into the evolutionary origin of craniates. In: Genesis. Nr. 46, 2008, doi:10.1002/dvg.20445, S. 625, 627.
  32. Pei-Yun Cong, Xian-Guang Hou, Richard J. Aldridge, Mark A. Purnell, Yi-Zhen Li: New data on the palaeobiology of the enigmatic yunnanozoans from the Chengjiang Biota, Lower Cambrian, China. In: Palaeontology. Nr. 58, 2014, doi:10.1111/pala.12117, S. 67.
  33. Degan Shu: A paleontological perspective of vertebrate origin. In: Chinese Science Bulletin. Nr. 48, 2003, doi:10.1007/BF03187041, S. 733.
  34. Pei-Yun Cong, Xian-Guang Hou, Richard J. Aldridge, Mark A. Purnell, Yi-Zhen Li: New data on the palaeobiology of the enigmatic yunnanozoans from the Chengjiang Biota, Lower Cambrian, China. In: Palaeontology. Nr. 58, 2014, doi:10.1111/pala.12117, S. 46.
  35. Jun-Yuan Chen: Early crest animals and the insight they provide into the evolutionary origin of craniates. In: Genesis. Nr. 46, 2008, doi:10.1002/dvg.20445, S. 623–624.
  36. Pei-Yun Cong, Xian-Guang Hou, Richard J. Aldridge, Mark A. Purnell, Yi-Zhen Li: New data on the palaeobiology of the enigmatic yunnanozoans from the Chengjiang Biota, Lower Cambrian, China. In: Palaeontology. Nr. 58, 2014, doi:10.1111/pala.12117, S. 65–66, 68.
  37. Simon Conway Morris, Jean-Bernard Caron: Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. In: Biological Reviews. Nr. 87, 2012, doi:10.1111/j.1469-185X.2012.00220.x, S. 480.
  38. Philip C. J. Donoghue, Joseph N. Keating: Early vertebrate evolution. In: Palaeontology. Nr. 57, 2014, doi:10.1111/pala.12125, S. 883.
  39. Michael J. Benton: Paläontologie der Wirbeltiere. Verlag Dr. Friedrich Pfeil, München 2007, ISBN 978-3-89937-072-0, S. 53.
  40. Jun-Yuan Chen, Di-Ying Huang, Qing-Qing Peng, Hui-Mei Chi, Xiu-Qiang Wang, Man Feng: The first tunicate from the Early Cambrian of South China. In: Proceedings of the National Academy of Sciences. Nr. 100, 2003, doi:10.1073/pnas.1431177100, S. 8314–8316.
  41. Jun-Yuan Chen, Di-Ying Huang, Qing-Qing Peng, Hui-Mei Chi, Xiu-Qiang Wang, Man Feng: The first tunicate from the Early Cambrian of South China. In: Proceedings of the National Academy of Sciences. Nr. 100, 2003, doi:10.1073/pnas.1431177100, S. 8316–8317.
  42. Diego C. García-Bellido, Michael S. Y. Lee, Gregory D. Edgecombe, James B. Jago, James G. Gehling, John R. Paterson: A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group. In: BMC Evolutionary Biology. Nr. 14, 2014, doi:10.1186/s12862-014-0214-z, S. 10.
  43. Diego C. García-Bellido, Michael S. Y. Lee, Gregory D. Edgecombe, James B. Jago, James G. Gehling, John R. Paterson: A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group. In: BMC Evolutionary Biology. Nr. 14, 2014, doi:10.1186/s12862-014-0214-z, S. 7–8.