Odometrie (ETCS)

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Rund 50 m vor einer ETCS-Halt-Tafel (links oben im Bild) dient eine einfache Eurobalise (rechts unten im Bild) als Referenzpunkt für die Odometrie und ermöglicht damit eine bessere Annäherung an das Signal.

Die Odometrie[1] (englisch odometry[2]) ist eine wesentliche Funktionalität des europäischen Zugbeeinflussungsssystems European Train Control System (ETCS).

Die ETCS-Spezifikation beschreibt die Odometrie als den „Prozess der Messung der Bewegung eines Zuges entlang eines Gleises“, der „zur Geschwindigkeits- und Wegmessung“ verwendet wird. (“The process of measuring the train’s movement along the track. Used for speed measurement and distance measurement.”)[2]

Die Odometrie ist Teil der ETCS-Fahrzeug-Referenzarchitektur.[3][4] Die Weg-, Geschwindigkeits- und Beschleunigungsmessung muss der Sicherheitsanforderungsstufe (SIL) 4 entsprechen[5] und wird für zahlreiche Funktionen von ETCS benötigt, darunter die Überwachung von konstanten Höchstgeschwindigkeiten und Bremskurven, Position Reports, Wegroll- und Stillstandsüberwachung sowie (in Level 3) als eine Grundlage der Gleisfreimeldung.

Bedeutung[Bearbeiten | Quelltext bearbeiten]

Zwei Eurobalisen in einem Gleis der Neubaustrecke Erfurt–Leipzig/Halle

Eindeutig bezeichnete und einem festen Bezugspunkt des Streckennetzes zugeordnete Eurobalisen ermöglichen dem Zug, seine genaue Position an diesen Punkten zu bestimmen. Von diesem Bezugspunkt ausgehend bestimmt die Fahrzeugausrüstung kontinuierlich den zurückgelegten Weg aus (bekannter) Balisenlage und relativer Wegdistanz.[5] Obwohl Eurobalisen oftmals im Abstand von etwa einem Kilometer verlegt werden, stehen dem Zug dazwischen jederzeit Standortinformationen zur Verfügung, die für vielfältige Zwecke verarbeitet werden können.

ETCS verwendet dabei im Wesentlichen drei verschiedene Standortangaben, für verschiedenste Zwecke:[6]

  • ungefähre Position der Zugspitze (estimated position), an der sich aus Sicht der ETCS-Fahrzeugsausrüstung die Spitze des Zuges höchstwahrscheinlich befindet.[2][6] Dabei werden die Charakteristik von Zug und Odometrie berücksichtigt.[2] Diese sehr wahrscheinliche Standortinformation wird für viele nicht sicherheitskritische Funktionen von ETCS verwendet. So erfolgt der Level- und RBC-Wechsel anhand dieser Positionsangabe. Sie kann ferner beispielsweise von Verkehrsleitsystemen (TMS) oder im automatisierten Fahrbetrieb (ATO) verarbeitet werden, um den Betrieb zu optimieren.
Ausschnitt eines Führerraumdisplays (DMI) während einer laufenden ETCS-Bremskurve von momentan 43 km/h auf 0 km/h in 190 m: Für die Bremskurvenüberwachung wird stets das max safe front end zu Grunde gelegt. Der tatsächliche Abstand zum Zielpunkt ist höchstwahrscheinlich größer. (Um den tatsächlichen Zielpunkt dennoch zu erreichen ist ein Release Speed vorzusehen.)
  • vordere sichere Zugspitze (max safe front end)[2][6] die sich ergibt, wenn der Zug sich so weit wie gerade noch zu erwarten bewegt hat. Diese Positionsangabe überschätzt in der Regel den seit dem letzten Referenzdatenpunkt zurückgelegten Weg. Sie wird insbesondere der Bremskurvenberechnung zu Grunde gelegt.
  • minimale sichere Zugspitze (min safe front end),[2][6] die sich ergibt, wenn der Zug sich so kurz wie gerade noch zu erwarten bewegt hat. Diese Positionsangabe unterschätzt in der Regel den seit dem letzten Referenzpunkt zurückgelegten Weg. In der Betriebsart Vollüberwachung (FS) wird eine Zwangsbremsung ausgelöst, wenn sie das Ende der Fahrterlaubnis (EOA) erreicht hat. Sie wird auch zur Bestimmung des Ortes, an dem ein Zug mit seiner gesamten Länge eine geschwindigkeitseinschränkende Weiche passiert hat und wieder beschleunigen darf, herangezogen. Auch bedingte (d. h. räumlich begrenzte) Nothaltaufträge (CES), wie sie zur Haltfallbewertung von manchen ETCS-Infrastrukturbetreibern regelmäßig verschickt werden, beziehen sich auf sie.

Manche ETCS-Funktionen nutzen ferner dem entsprechende Angaben zum Zugschluss (estimated, minimum bzw. maximum safe rear end).[7] Beispielsweise wird in ETCS Level 3 im der für die Gleisfreimeldung notwendigen Zugintegritätsmeldung das minimale sichere Zugende (min safe rear end) mit übermittelt.[8]

Eurobalisen werden über eine ETCS-Antenne (Balise Transmission Module, BTM) vom Fahrzeug gelesen.

Der aus der vorderen und minimalen sicheren hinteren Zugspitze sich ergebende Vertrauensbereich des Zugstandorts (Train position confidence interval) beschreibt den Bereich, in dem sich Zug mit einer definierten Wahrscheinlichkeit befindet.[2] Er umfasst den Odometriefehler in beiden Richtungen (under-reading amount, over-reading amount) und den doppelten Balisenverlegefehler (location accuracy) der maßgebenden Balisengruppe.[2] Der Odometriefehler setzt sich dabei wiederum aus dem Wegmessfehler beim Lesen des zu Grunde liegenden Balisenortes sowie aus der Ungenauigkeit der Odometrie für den seither zurückgelegten Weg zusammen.[2]

Die von ETCS verwendete Wegmessung erfolgt relativ, das heißt ohne Bezug zum Umfeld, in dem sich der Zug bewegt. Stattdessen dienen Eurobalisen als Referenzpunkte.[7] In den ETCS-Leveln 2 und 3 dient dabei die maßgebende Balisengruppe[9] (Last relevant balise group, LRBG) als gemeinsamer räumlicher Bezugspunkt für Strecken- und Fahrzeugausrüstung.[2] Je größer der Abstand zur LRBG, desto größer der Vertrauensbereich. Der Vertrauensbereich wird zurückgesetzt, wenn eine neue Balisengruppe überfahren und dabei zur LRBG wird.[10] Er kann dabei nur an verketteten Datenpunkten zurückgesetzt werden.[11][12]

Die Balisenverlegegenauigkeit wird, soweit Verkettung zur Verfügung steht, Verkettungsinformation entnommen. Dazu dient die Variable Q_LOCACC, die einen Wertebereich von 0 bis 63 m umfasst und metergenau definiert werden kann. Ansonsten wird der Nationale Wert Q_NVLOCACC herangezogen oder, falls dieser nicht gesetzt ist, dessen Standardwert (12 m).[13][14][15]

Der Odometriefehler muss bei der Planung von ETCS-Infrastruktur mit berücksichtigt werden.[7] Je größer der Odometriefehler, desto früher erfolgen Bremsankündigung und Bremseinsatz. Um einen unnötig frühen Bremseinsatz zu vermeiden, sollten insbesondere an neuralgischen Punkten zu große Abstände zwischen maßgebenden Balisengruppen vermieden werden.[9] Ferner kann in sehr langen Blockabschnitten die Verlegung zusätzlicher Balisen erforderlich sein, die ausschließlich zur Repositionierung des Zuges dienen, um die Kapazität zu erhöhen.[16] In Deutschland sind beispielsweise 50 und 300 m u. a. vor Blockkennzeichen Datenpunkte anzuordnen, die nur der Ortung dienen.[17]

Ist ein nationales Zugbeeinflussung als Specific Transmission Module in eine ETCS-Fahrzeugausrüstung integriert, nutzt dieses die Odometrie von ETCS mit.[18]

Im automatisierten Fahrbetrieb (ATO) werden präzise verlegte Balisen in Verbindung mit Odometriedaten für präzises Halten genutzt, beim Projekt Thameslink beispielsweise von ±50 cm.[19]

Anforderungen[Bearbeiten | Quelltext bearbeiten]

Für den zurückgelegten Weg seit der letzten LRBG soll der längs zur Fahrzeugspitze in beiden Richtungen zu addierende Wegmessfehler (over/under reading amount) 5 m + 5% des zurückgelegten Weges nicht überschreiten. Bei einer Fehlfunktion der Fahrzeugausrüstung soll diese gleichwohl ein sicheres Konfidenzintervall festlegen.[20] (Bei einer die Mindestanforderungen der Spezifikation exakt erfüllenden Fahrzeugausrüstung und einem angenommenen Balisenverlegefehler von ±5 m würde der beidseitige Wegmessfehler beispielsweise nach 1000 m damit genau 60 m betragen. Der Vertrauensbereich der Zugspitze wäre damit 120 m lang.)

Soweit die Ungenauigkeit der Geschwindigkeitsmessung nicht per Nationalem Wert unterdrückt wird, darf die Geschwindigkeitsmessung für Geschwindigkeiten unter 30 km/h eine Toleranz von ±2 km/h nicht überschreiten, für darüber liegende Geschwindigkeiten steigt die Toleranz auf ±12 km/h bei 500 km/h linear an.[21]

Die ungefähre Position der Zugspitze soll weniger als eine Sekunde bestimmt werden, bevor ein Position Report abgesetzt wird.[22]

Variablen[Bearbeiten | Quelltext bearbeiten]

Die Beschleunigungs-, Geschwindigkeits- und Weginformationen der Odometrie werden vom ETCS-Bordcomputer (European Vital Computer, EVC) gegen zahlreiche Abstands-, Geschwindigkeits- und Bremsverzögerungs-Variablen abgeglichen.

In der ETCS-Sprache ("ETCS Language") dienen Variablen ("variables") der Kodierung einzelner Werte von Daten.[23] Variablen werden zu definierten Paketen ("packets") zusammengefasst.[23] Eines oder mehrere Pakete bilden wiederum eine Nachricht ("message"), die per Balise(n), Funk (Euroradio) oder Euroloop übertragen wird.[24] Bei der Übertragung per Eurobalise kann eine Nachricht aus einem oder mehreren Telegrammen ("telegrams") bestehen, wobei jede Balise genau ein Telegramm überträgt.[24]

ETCS verwendet für Abstandsangaben 36 Variablen, darunter:[25]

  • D_CYCLOC: Abstand, in dem ein Position Report erwartet wird[25]
  • D_NVROLL: Maximaler Weg der Weg- und Rückrollüberwachung[25]
  • D_LINK: Abstand zur nächsten verketteten Balisengruppe[25]
  • D_LRBG: Abstand zwischen der ungefähren Position der Zugspitze und der letzten relevanten Balisengruppe (LRBG)[25]
  • D_RBCTR: Abstand zum RBC-Wechsel[25]
  • D_TEXTDISPLAY: Abstand, an dem an Text angezeigt werden soll[25]

Alle diese Distanzvariablen sind 15 bit breit und haben einen Wertebereich von 0 m bis 327.660 km.[25]

Weitere 18 Variablen betreffen Geschwindigkeiten, darunter:[25]

  • V_MAIN: maximal zulässige Geschwindigkeit aufgrund der Signalisierung[25]
  • V_MAXTRAIN: maximale Geschwindigkeit des Zuges[25]
  • V_NVONSIGHT: maximale Geschwindigkeit beim Fahren auf Sicht[25]
  • V_NVREL: Release Speed[25]
  • V_SHUNT: maximale Geschwindigkeit beim Rangieren[25]
  • V_STATIC: örtlich zulässige Geschwindigkeit der Strecke (Abschnitt des Static Speed Profiles)[25]
  • V_TRAIN: Geschwindigkeit des Zuges[25]

Alle Geschwindigkeitsvariablen beginnen mit „V_“, sind 7 bit breit und umfassen einen Wertebereich von 0 bis 600 km/h in 5-km/h-Schritten.[25]

Weitere fünf Variablen betreffen Bremsbeschleunigungen. Die jeweils 6 bit breiten Variablen beginnen mit „A_“ und umfassen einen Wertebereich von 0 bis 3 m/s², in Schritten von 0,05 m².[25]

Für vier der Abstandsvariablen, neun der Geschwindigkeitsvariablen sowie alle fünf Beschleunigungsvariablen werden von der Strecke an den Zug bei Einfahrt in einen ETCS-Bereich in Form von Nationalen Werten (National Values) übermittelt.[14][4] Zusätzlich wird mit der Variable Q_NVLOCACC ein Standardwert für die Balisenverlegegenauigkeit übermittelt,[14] der herangezogen wird, soweit keine Verkettungsinformation verfügbar ist[13].

Sensorik[Bearbeiten | Quelltext bearbeiten]

Ein ETCS-Fahrzeugcomputer (European Vital Computer, EVC): Die Speed and Distance Unit ist ein Teil des EVC.

Die Anwendung nur eines Messprinzips ist für eine SIL-4-sichere Positionsbestimmung nicht ausreichend. Vielmehr ist eine Verknüpfung mehrerer Messverfahren erforderlich. Dies ist die zentrale Aufgabe der Speed and Distance Unit (SDU). In ihr laufen die aus verschiedenen Sensoren und nach verschiedenen Messprinzipien gewonnenen Daten zusammen, werden bewertet, korrigiert sowie unplausible Werte ggf. unterdrückt, um letztlich zyklisch Weg-, Geschwindigkeits- und Beschleunigungsinformation den übergeordneten Systemen zur Verfügung zu stellen. Zusätzlich wird ein Konfidenzintervall mit maximal zu erwartender Über- und Unterschreitung übermittelt. Neben momentanen Messwerten fließen dabei auch charakteristische Eigenschaften mit ein.[5] Die genauen Algorithmen sind Firmengeheimnisse.[1] Die Auswahl, Anordnung und Konfiguration der verwendeten Sensoren kann grundsätzlich vom Hersteller frei gewählt werden, soweit die Sicherheitsanforderungen an das Odometriesystem erfüllt werden. Aus den Sicherheitsanforderungen an das Gesamtsystem der Odometrie ergeben sich wiederum Anforderungen an die einzelnen Sensoren.

Gängige für die Odometrie verwendete Sensoren sind Wegimpulsgeber und Radare, teils auch Beschleunigungssensoren.[7][26][27] Das „EBI Cab 2000“-System von Bombardier verwendet beispielsweise zwei optische Impulsgeber, die auf separate Radachsen montiert sind, sowie ein Dopplerradar (Stand: 2006).[18] Das „Trainguard“-System von Siemens verwendet zwei Wegimpulsgeber und zwei Radare.[28] Das von Alstom gelieferte ETCS-Ausrüstung des ICE 3 nutzt ein Radar im (angetrieben) Endwagen sowie zwei Wegimpulsgeber im benachbarten (nicht angetrieben) Trafowagen.[29] Für die Wuppertaler Schwebebahn verwendet Alstom dagegen Radimpulsgeber, Radar und Beschleunigungssensor.[30]

Enge Kurven und starkes Gefälle gelten als vergleichsweise schwierige Randbedingungen für die Odometrie.[31]

Drehzahlgeber[Bearbeiten | Quelltext bearbeiten]

Drehzahlgeber an einem Drehgestell

Umdrehungszähler[32], auch Drehzahlgeber, Radachsgeber oder Wegimpulsgeber bilden in der Regel die Grundlage der ETCS-Odometrie.

Zur Abtastung werden beispielsweise Magnetismus oder der Hall-Effekt genutzt.[33][34] Zu den möglichen Ausführungen zählen ein Einbau in Kegelrollenlager von Neufahrzeugen und die Nachrüstung von Sensoren zwischen Radsatzlagergehäuse und Gehäusedeckel.[32][33] Neben der Umdrehungszählung ist auch eine Richtungsüberwachung erforderlich.[32]

Die klassische Bestimmung des zurückgelegten Weges über die Bestimmung des abgerollten Radumfangs stößt dabei an physikalische Grenzen, die zu erheblichen Unterschieden zwischen tatsächlich zurückgelegten und gemessenen Weg führen können. Die Ursachen dafür liegen unter anderem in Messabweichungen bei der Bestimmung der Raddurchmesser, zeitabhängige Schwankungen der abgerollten Durchmesser (Abnutzung) sowie Gleiten und Schleudern beim Bremsen und Beschleunigen. Bei modernen Fahrzeugen steht ferner vielfach keine freilaufende Achse (ohne Bremse und Antrieb) zur Verfügung, die für eine optimale Distanzmessung mittels Geber erforderlich ist. Ferner erschweren Gleit- und Schleuderschutz-Systeme die Distanzmessung per Radumdrehung.[5]

Wird bei der Wartung versehentlich die Eingabe des richtigen Radumfangs vergessen, driften der real zurückgelegte und der berechnete Weg mit jeder Umdrehung weiter auseinander.[35]

Um aus der Drehzahl den zurückgelegten Weg und die Geschwindigkeit zu ermitteln, muss regelmäßig der Raddurchmesser bzw. -Umfang gemessen und auf dem ETCS-Fahrzeuggerät eingestellt werden.

Doppler-Radar[Bearbeiten | Quelltext bearbeiten]

Dopplerradar zur Weg- und Geschwindigkeitsmessung an einem Triebfahrzeug

Doppler-Radare nutzen den Doppler-Effekt zur Geschwindigkeitsmessung. Die auf den Oberbau ausgerichteten Radare sind unempfindlich für Messfehler aus den am Rad auftretenden Effekte Gleiten und Schleudern.

Sie gelten allerdings als anfällig für Eis und Schnee.[1] Ein besonders glatter, ebener Oberbau wie die Feste Fahrbahn, aber auch Schneedecken, von denen Radiowellen gleichförmig zurückgestrahlt werden, führt zu schlechten Werten.[35] Ferner gelten Radare bei sehr niedrigeren Geschwindigkeiten als vergleichsweise ungenau.

Beschleunigungssensor[Bearbeiten | Quelltext bearbeiten]

Teilweise werden auch Beschleunigungssensoren verwendet. Sie sind unempfindlich gegenüber Gleiten und Schleudern, können aber nicht den zurückgelegten Weg, sondern nur Beschleunigungen messen.

Auf den Neubaustrecken der VDE 8 (VDE 8) erwies sich die Feste Fahrbahn als derart „eben und glatt“, dass eigentlich funktionierende Beschleunigungssensoren vereinzelt als gestört ausgegeben wurden, da das „Rumpeln“ auf der Strecke viel geringer als erwartet war.[35]

Weitere Sensoren[Bearbeiten | Quelltext bearbeiten]

Auf den Schienenkopf gerichteter optischer Sensor am Triebkopf eines ICE 1

Auf dem ICE 1 kommen auf Leuchtdioden (LEDs) basierende Sensoren als primäres Odometrie-System zum Einsatz.[36]

Erwogen bzw. erprobt wird die Nutzung von Satellitennavigation (GNSS).[37][38] In diesem Zusammenhang werden auch die Nutzung von EGNOS sowie „virtuelle Balisen“, wobei Baliseninformationen aus einer auf dem Fahrzeug hinterlegten digitalen Karte gelesen und Eurobalisen weitgehend überflüssig werden sollen, erwogen.[39] Experimentiert wurde ferner mit Satellitennavigation in Kombination mit ortsfesten Wegmarken.[40] Auch eine Kombination von Satellitenortung in Verbindung mit Dopplerradar, einem optischen Sensor, einem Achsimpulsgeber, einem Wirbelstromsensor sowie einem Inertialsensor wurde für ETCS Level 3 vorgeschlagen.[41] Experimentiert wurde ferner mit Laserscannern zur Erkennung charakteristischer Elemente des Oberbaus und beispielsweise Weichen und Signalen entlang der Strecke, die mit einer auf dem Fahrzeug hinterlegten digitalen Streckenkarte abgeglichen wurden.[42]

Automatische Objekterkennung mit Hilfe einer Software.

Noch 2019 soll bei DB Fernverkehr ein System, das durch Objekterkennung aus einer hinter der Frontscheibe angebrachten Kamera Odometriedaten gewinnt, über ein Jahr auf der VDE 8 getestet werden.[35]

Die Schweizerischen Bundesbahnen planen zukündig eine Kombination von Satellitennavigation, Trägheitsnavigation und Radwegmessung, um Schienenfahrzeuge exakt zu orten.[43]

Diskutiert wird auch eine präzise streckenseitige Ortsbestimmung per Lichtwellenleiter (Distributed Acoustic Sensing).[44]

Experimentiert wurde auch mit GALILEO Test- und Entwicklungsumgebungen.[40]

Simulation der Sensorik[Bearbeiten | Quelltext bearbeiten]

Bei Labortests von ETCS-Fahrzeuggeräten können elektrische Signale für die Odometrie oder auch direkt die Geschwindigkeit übergeben werden.[45][46]

Geschichte[Bearbeiten | Quelltext bearbeiten]

Bereits für die Linienzugbeeinflussung (LZB), die in den 1970er Jahren serienreif wurde, war eine fahrzeuggebundene Odometrie entwickelt worden.[47] Die LZB stellt aufgrund ihrer vielen Schleifenkreuzungen im Vergleich zu ETCS Referenzpunkte in hoher Dichte bereit.[48]

In der ersten ETCS-Projektbeschreibung von 1991 war die Schaffung von harmonisierten Schnittstellen zwischen der ETCS-Onboard-Unit und weiteren Umsystemen der Fahrzeugausrüstung, wie beispielsweise der Odometrie, vorgesehen.[49]

Beim deutschen ETCS-Pilotprojekt Jüterbog–Halle/Leipzig war 2005 die Bedeutung der Odometrie und die Komplexität der Sensorik die wichtigste Erfahrung.[50]

2007 war eine Genauigkeit von einem Prozent der seit der letzten Ortungsbalise, mindestens aber 7 Meter, gefordert. Erfahrungen im Testbetrieb hatten dabei gezeigt, dass dies mit den damals vorhandenen Systemen nicht gelang, derart genaue Werte auch unter widrigen Wetter- und Umweltbedingungen SIL-4-sicher bereitzustellen.[51] Die Odometrie galt zu dieser Zeit zwar ferner als sicher, aber noch nicht ausreichend robust.[52] Die Systemkonfiguration von Alstom – mit Drehzahlmessung, Radar und Beschleunigungssensoren – galt als anfällig gegenüber ungünstigen Witterungsbedingungen, eine Überarbeitung war noch 2007 geplant.[53] Auch die von Siemens verwendete Konfiguration, mit zwei Radaren und einem Radimpulsgeber, galt als nicht wintertauglich. Da die damals verfügbaren Radargeräte nicht beheizt werden konnten, kam es bei Schnee und Eis zum Ausfall beider Radare, womit nur noch eine Geschwindigkeitsinformation zur Verfügung stand und eine Zwangsbremsung eingeleitet wurde. Sensoren und Software wurden daraufhin weiterentwickelt.[54] Zulieferer von Odometriekomponenten arbeiteten ebenfalls an einer robusteren Software für ihre Systeme.[52]

Auch bei den für den Betrieb auf Neubaustrecke Mattstetten–Rothrist ausgerüsteten ICE 1 traten anfänglich Odometrie-Probleme auf.[55] Mit mehreren neuen Softwareversionen sei die Robustheit und Wartbarkeit laut Herstellerangaben wesentlich verbessert worden. Die vertraglich geforderte maximale Begrenzung des Odometriefehlers auf 2 % sei eingehalten worden und eine Wiederaufnahme der Sensoraktivität nach einem Ausfall der Wegmessung umgesetzt worden.[56]

Eine Betriebserprobung der ersten fünf mit ETCS ausgerüsteten ÖBB-Lokomotiven der Baureihe 1116 zeigte um 2007 eine Reihe notwendiger Verbesserungen auf, darunter Radar-Probleme im Winter.[57] Bei der Systemintegration von ETCS in Österreich in den frühen 2010er Jahren zählten Odometrieprobleme und daraus resultierende Reaktionen am Fahrzeug und der Streckenausrüstung zu den häufigsten Fehlern.[58] Im ersten Winter nach der Inbetriebnahme von ETCS kam es zu „massive[n] Probleme[n] mit der Odometrie“, die durch Nachrüstung von Balisengruppen vor Blocksignalen, durch Verbesserungen der Fahrzeugsoftware sowie durch die Beheizung des Radars behoben werden konnten.[59] Auch bei den für den Einsatz in Österreich mit ETCS ausgerüsteten ICE T zeigten sich im Betriebseinsatz „erhebliche Odometrieprobleme“. Die Ursache lag in den eingesetzten Wegimpulsgeber-Mitnehmern, die schließlich erfolgreich durch in anderen ICE-Baureihen eingesetzte Mitnehmer getauscht wurden.[55]

In den ersten Betriebsmonaten der im Dezember 2015 in Betrieb genommen Neubaustrecke Erfurt–Leipzig/Halle führten defekte Odometrie-Komponenten je Vorfall zu mehr Verspätungsminuten als der Ausfall von GSM-R-Funkmodulen.[60] Auf der Rückfahrt vom Festakt zur Eröffnung der Neubaustrecke Ebensfeld–Erfurt erlitt der Premierenzug im Dezember 2017 aufgrund eines falsch eingegebenen Raddurchmessers mehrfach Zwangsbremsungen und erreichte sein Ziel mit 130-minütiger Verspätung. In den folgenden Tagen kam es zu einer Reihe von Einzelfehlern an ICE-1-Triebzügen, die allesamt in den Bereich der Odometrie fielen. Der Großteil dieser Triebzüge war vorher nicht unter Realbedingungen getestet worden. Die Mängel wurden binnen weniger Wochen beseitigt.[61]

Bei den in den 2000er Jahren für die Neubaustrecke Mattstetten–Rothrist mit ETCS ausgerüsteten Lokomotiven der Baureihe Re 460 bereitete die Geschwindigkeits- und Wegerfassung große Probleme, deren Bewältigung erst nach mehreren Jahren gelang. Im Rahmen einer 2018 begonnenen Modernisierung führte der Einbau von IGBT-Stromrichtern zu einem veränderten dynamischen Verhalten von Fahrmotor, Antrieb und Radsatz, infolgedessen das bislang verwendete mathematische Modell der Odometrie nicht mehr stimmig war. Um u. U. nicht mehr sicheren berechneten Geschwindigkeiten vorzubauen, wurde ein Sicherheitszuschlag von bis zu 18 km/h eingeführt, der in einem Rückfallmodus ("degraded"-Modus) von der ermittelten Geschwindigkeit abgezogen wird. Je nach erlaubter Geschwindigkeit sollen Lokomotivführer bis auf Weiteres 10 bis 20 km/h langsamer fahren als erlaubt. Soweit dennoch eine Zwangsbremsung auftritt, wird die Odometrie neu gestartet und der Fehler damit zumeist behoben.[1]

Wie die SBB im Juli 2019 mitteilten, sei es bei der Instandhaltung von Fahrzeugen zu fehlerhaften Einstellungen gekommen, welche die genaue Positionsbestimmung von Fahrzeugen verhinderten.[62] Infolgedessen wurden Mitte April 2019 einem Lösch- und Rettungszug in Flüelen sowie am 27. Juni 2019 einer Re 420 auf der Strecke Lausanne–Villeneuve eine nicht für den Zug bestimmte Fahrterlaubnis erteilt. Bei der Re 420 waren falsche Parameter für die Odometrie (vertauschte Messwinkel und Radarkoeffizienten nach einer Instandhaltung) hinterlegt worden, die zu einer großen Ortungsungenauigkeit (Vertrauensintervall) führten. Der Fehler trat nach der Kürzung einer Fahrterlaubnis auf ein rückliegendes Signal mittels bedingtem Nothalt auf.[63] Weder die Onboard-Systeme noch die Sicherungsanlagen entlang der Bahnstrecke hätten auf diesen Fehler reagiert. Durch verschiedene Maßnahmen solle eine Wiederholung dieses Fehlers ausgeschlossen werden.[62] Die betroffene Lokomotive wurde abgestellt, weitere Fahrten in ETCS-Level-2-Bereichen durch Sperrung der On-Board-Rechner-Kennung verhindert. Bei einem systematischen und kontinuierlichen Monitoring auf auffällige Odometriewerte wurden vier Fahrzeuge einer Überprüfung unterzogen. Ferner wurden alle auf dem Schweizer Netz verkehrenden Eisenbahnverkehrsunternehmen auf die Einhaltung der Instandhaltungsprozesse hingewiesen sowie Informationen und Handlungsanweisungen an Lokführer und Fahrdienstleiter verteilt. Streckenseitig sind darüber hinaus Software- und Projektierungsänderungen erforderlich. Als Sofortmaßnahme wurde die Haltfallbewertung in allen betroffenen RBCs deaktiviert und die Odometriedaten laufend überwacht.[63]

Sonstiges[Bearbeiten | Quelltext bearbeiten]

Das auf ETCS basierende Zugbeeinflussungssystem ZSI 127 nutzt eine vereinfachte Odometrie, die ausschließlich Wegimpulsgeber verwendet.[64]

Die mit dem ETCS-ähnlichen Zugbeeinflussungssystem S-Bahn Berlin ausgerüsteten Fahrzeuge sind mit einem Wegimpulsgeber und einem Radar ausgerüstet.[65]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d Erneut Odometrie-Problem auf den SBB-Lokomotiven Re 460. In: Eisenbahn-Revue International. Nr. 6, 2018, ISSN 1421-2811, S. 299.
  2. a b c d e f g h i j ETCS-Spezifikation, Subset 023, Version 3.3.0, Abschnitt 4
  3. ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 2.5.3
  4. a b ETCS-Spezifikation, Subset 023, Version 3.3.0
  5. a b c d Rudolf E. Ganz, Wulf A. Kolbe: Speed and Distance Unit (SDU) als Kernstück moderner fahrzeugseitiger Hochgeschwindigkeits-ETCS Lösungen. In: Glasers Annalen Tagungsband SFT Graz. Band 129, 2005, ISSN 1618-8330, S. 275–281.
  6. a b c d ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 3.6.4, insbesondere 3.6.4.4
  7. a b c d Norbert Apel, Jenny Strahl: Basic principles of Odometry. In: Peter Stanley (Hrsg.): ETCS for engineers. 1. Auflage. Eurailpress, Hamburg 2011, ISBN 978-3-7771-0416-4, S. 126–130.
  8. ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 3.6.5.2
  9. a b André Feltz, Nils Nießen, Tobias Walke, Jürgen Jacobs: Analyse und Optimierung von ETCS-Parametern im Luxemburger Eisenbahnnetz. In: Signal + Draht. Band 110, Nr. 3, März 2017, ISSN 0037-4997, S. 6–17.
  10. ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 3.6.4.2.2
  11. ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 3.4.4.1.1
  12. ETCS-Spezifikation, Subset 040, Version 3.4.0, Abschnitt 4.2.4.8.2
  13. a b ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 3.6.4.2.3
  14. a b c ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt A.3.2
  15. ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 7.5.1.115.
  16. Christoph Lackhove, Benedikt Schreier: Projektierungsannahmen zur ETCS-Kostenschätzung. In: ZEVrail. Band 134, Nr. 10, Oktober 2010, ISSN 1618-8330, S. 420–427.
  17. Untersuchung zur Einführung von ETCS im Kernnetz der S-Bahn Stuttgart. (PDF) Abschlussbericht. WSP Infrastructure Engineering, NEXTRAIL, quattron management consulting, VIA Consulting & Development GmbH, Railistics, 30. Januar 2019, S. 246, abgerufen am 28. April 2019.
  18. a b Roger Hall: ETCS-Fahrzeugausrüstung in den Niederlanden. In: Signal + Draht. Band 98, Nr. 9, 2006, ISSN 0037-4997, S. 6–10.
  19. Paul Booth: ETCS and ATO through the Thameslink core. In: Railway Gazette International. Band 171, Nr. 9, September 2015, ISSN 0373-5346, S. 33–37.
  20. ETCS-Spezifikation, Subset 041, Version 3.2.0, Abschnitt 5.3.1.1
  21. ETCS-Spezifikation, Subset 041, Version 3.2.0, Abschnitt 5.3.1.2
  22. ETCS-Spezifikation, Subset 041, Version 3.2.0, Abschnitt 5.3.1.3
  23. a b ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 7.3
  24. a b ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 8.3.2
  25. a b c d e f g h i j k l m n o p q r ETCS-Spezifikation, Subset 026, Version 3.6.0, Abschnitt 7.5
  26. Carla Eickmann, Katrin Gerlach, Lars Ebrecht: Zukunftsperspektiven von Ortungstechnologien. Betrachtung der Ortung im Betrieb und in der Eisenbahnleit- und Sicherungstechnik. In: ZEVrail. Band 133, Nr. 11–12, 2009, ISSN 1618-8330, S. 446–455.
  27. Christoh Gralla: Kostenspareffekte bei der ETCS-Implementierung auf der Fahrzeug- wie auch auf der Infrastrukturseite. In: Eisenbahntechnische Rundschau. Juli 2013, ISSN 0013-2845, S. 30–36.
  28. Trainguard. (PDF) Volle Interoperabilität für den Bahnverkehr. In: siemens.com. Siemens, 2014, S. 5, abgerufen am 2. Februar 2019.
  29. ETCS-Einbau in die Triebzüge der BR 403 (Teil 2). In: Gewerkschaft Deutscher Lokomotivführer (Hrsg.): Voraus. Nr. 11, November 2017, ISSN 1438-0099, S. 24–26.
  30. Christian Kindinger, Hans Kron, Dieter Wolff: ETCS im Nahverkehr. In: Der Nahverkehr. Nr. 4, April 2017, ISSN 0722-8287, S. 33–38.
  31. Messfahrten mit DB-Zügen in der Schweiz. In: Schweizer Eisenbahn-Revue. Nr. 7, Juli 2008, ISSN 1022-7113, S. 366.
  32. a b c Gottfried Kure, Rolf Schmiechen, Bengt Stillborg: Zustandsüberwachungssystem und Sensorik für ETCS-Positionsbestimmung (= Dresden Rad Schiene). 2009, S. 107–109.
  33. a b Steffen Günther: Zuverlässige Sensorik in Schienenfahrzeugen. In: Eisenbahntechnische Rundschau. Nr. 5, Mai 2011, ISSN 0013-2845, S. 60–63.
  34. DEUTA SENSOREN. (PDF) Deuta-Werke, Juli 2018, S. 6 f., abgerufen am 2. Januar 2019.
  35. a b c d Florian Rohr: Digitale Sensoren zur ETCS-Standorterkennung. In: Der Eisenbahningenieur. Band 69, Nr. 8, August 2019, ISSN 0013-2810, S. 42 f.
  36. ETCS. (PDF) In: ETCS. Hasler Rail, Saira Electronics, abgerufen am 19. Juli 2019 (ohne Zeitangabe, ohne Seitenbezeichnungen; siehe PDF-Seiten 2 und 4, jeweils links).
  37. Francesco Inzirillo: GNSS for ETCS/ERTMS: integration and benefits. Case Study. (PDF) 2016, abgerufen am 13. Januar 2019 (englisch).
  38. Potenziale satellitenbasierter Ortung für Eisenbahnen. In: Eisenbahntechnische Rundschau. Nr. 1+2, Januar 2009, ISSN 0013-2845, S. 38–43.
  39. Anja Bussmann, Benedikt Schreier, Florian Brinkmann, Bärbel Jäger: Wirtschaftlichkeit eines satellitengestützten ERTMS für deutsche Regionalstrecken. In: Signal + Draht. Band 108, Nr. 10, 2016, ISSN 0037-4997, S. 6–11.
  40. a b Daniel Lüdicke, René Rütters, Torsten Dellmann: Sichere Positionierung eines Schienenfahrzeuges für automatische Rangierbewegungen (= Dresden Rad Schiene). 2012, S. 52–54.
  41. Carla Eickmann, Katrin Gerlach: Fahrzeugseitiges Ortungssystem für den sicheren Bahnbetrieb. In: Der Eisenbahningenieur. Nr. 8, August 2008, ISSN 0013-2810, S. 30–34.
  42. Katrin Lüddecke, Christian Rahmig, Karsten Lemmer: Hochgenaue und integre Ortung für den Schienenverkehr der Zukunft. In: Der Eisenbahningenieur. September 2012, ISSN 0013-2810, S. 72–75.
  43. Walter Jäggi: «Smartrail»: So wollen die SBB Züge sicherer machen. In: tagesanzeiger.ch. 22. August 2019, abgerufen am 23. August 2019.
  44. Gavin Lancaster, Martin Rosenberger: Distributed Acoustic Sensing (DAS) im Bahnbereich: Umsetzung einer Vision. In: Signal + Draht. Band 110, Nr. 7+8, Juli 2018, ISSN 0037-4997, S. 47–57.
  45. Karl-Heinz Suwe: Internationale IRSE-Convention 2005 in Straßburg. In: Signal + Draht. Band 97, Nr. 11, 2005, ISSN 0037-4997, S. 6–14.
  46. Bernd Gonska, Oliver Röwer, Lennart Ansbach: Rekonstruktion betrieblicher Szenarien aus JRU-Aufzeichnungen für Labortests. In: Signal + Draht. Band 109, Nr. 4, April 2017, ISSN 0037-4997, S. 21–26.
  47. Jochen Trinckauf: ETCS als Schnittstelle: Für die digitale Zukunft gerüstet. In: Deine Bahn. Nr. 8, August 2018, S. 14–17.
  48. Peter Schmied: Verdichtung des Wiener S-Bahn-Verkehrs. In: Eisenbahn Österreich. Nr. 8, 2018, S. 438.
  49. Peter Winter: Conclusion and outlook. In: Compendium on ERTMS. Eurailpress, Hamburg 2009, ISBN 978-3-7771-0396-9, S. 235–242.
  50. Rainer Knewitz: 5. Internationaler SIGNAL+DRAHT-Kongress 2005. In: Signal + Draht. Band 97, Nr. 12, 2005, ISSN 0037-4997, S. 6–16.
  51. ETCS-Tagung in Berlin. In: Eisenbahn-Revue International. Nr. 2, 2008, ISSN 1421-2811, S. 72 f.
  52. a b Sechs Wochen Vollbetrieb mit ETCS Level 2 auf der NBS Mattstetten – Rothrist. In: Schweizer Eisenbahn-Revue. Nr. 6, 2007, ISSN 1022-7113, S. 284 f.
  53. Neue Verzögerung bei ETCS auf der NBS Mattstetten – Rothrist. In: Schweizer Eisenbahn-Revue. Nr. 1, 2007, ISSN 1022-7113, S. 13 f.
  54. ETCS Level 2 im Lötschberg-Basistunnel und auf der NBS Mattstetten–Rothrist. In: Schweizer Eisenbahn-Revue. Nr. 4, April 2007, ISSN 1022-7113, S. 183–185.
  55. a b Jan-Peter Böhm, Werner Geier, Peter Lankes, Jürgen Memke: Die Ausrüstung der deutschen ICE-Hochgeschwindigkeitszüge mit ETCS. In: Eisenbahntechnische Rundschau. Nr. 5, Mai 2014, ISSN 0013-2845, S. 49–57.
  56. Marc Joseph, Michael Tobler: Freie Fahrt in der Schweiz für ETCS Level 2 mit Siemens Trainguard 200 und „Schweiz-Paket“. In: Schweizer Eisenbahn-Revue. Nr. 10, Oktober 2008, ISSN 1022-7113, S. 492–494.
  57. Peter Schnmied: Weiterführung der Streckenausrüstung mit ETCS L1 bei den ÖBB. In: Schweizer Eisenbahn-Revue. Nr. 3, März 2007, ISSN 1022-7113, S. 129.
  58. Jörg Liesche, Wolfgang Hammerschmidt, Tino Günther: Von der Theorie zur Praxis – Systemintegration bei den ÖBB. In: Signal + Draht. Band 106, Nr. 7+8, 2014, ISSN 0037-4997, S. 19–24.
  59. Helmut Steindl: Internationaler SIGNAL+DRAHT-Kongress 2014. In: Signal + Draht. Band 107, Nr. 1+2, 2015, ISSN 0037-4997, S. 6–21.
  60. Andreas Göttig, John Patrick Brady Steinebach: Anforderungen von ETCS an GSM-R bei der DB Netz AG am Beispiel VDE 8.2. In: Signal + Draht. Band 107, Nr. 1+2, Januar 2017, ISSN 0037-4997, S. 15–24.
  61. Neubaustrecke VDE 8.1 eröffnet. In: Eisenbahn-Revue International. Nr. 2, 2018, ISSN 1421-2811, S. 70–72.
  62. a b Ramon Gander: SBB entdeckt Fehler bei der Zugsicherung und ergreift Sofortmassnahmen. In: sbb.ch. Schweizerische Bundesbahnen, 18. Juli 2019, abgerufen am 20. Juli 2019.
  63. a b Sicherheitsrelevanter Vorfall mit ETCS L2 auf der Strecke Lausanne – Villeneuve. In: Eisenbahn-Revue International. Nr. 7+8, Juli 2019, ISSN 1421-2811, S. 410.
  64. Alex Brühwiler, Hans Schlunegger: Kompaktes Zugsicherungssystem auf ETCS-Basis. In: Signal + Draht. Band 97, Nr. 3, 2005, ISSN 0037-4997, S. 12–16.
  65. Klaus Hornemann, Norbert Abel: ZBS – Das neue Zugbeeinflussungssystem für die Berliner S-Bahn vor der Praxiseinführung. In: Eisenbahntechnische Rundschau. Nr. 6, Juni 2011, ISSN 0013-2845, S. 37–41.