Operator (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Racine carrée bleue.svg
Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen.

Bitte hilf mit, die Mängel dieses Artikels zu beseitigen, und beteilige dich bitte an der Diskussion! (Artikel eintragen)

Ein Operator ist eine mathematische Vorschrift (ein Kalkül), durch die man aus mathematischen Objekten neue Objekte bilden kann. Er kann eine standardisierte Funktion oder eine Vorschrift über Funktionen sein. Anwendung finden die Operatoren bei Rechenoperationen, also bei manuellen oder bei maschinellen Berechnungen.

Einige Operatoren für die vier Grundrechenarten: Plus, Minus, Mal und Geteilt.

Operator[Bearbeiten | Quelltext bearbeiten]

Standardisierte Operatoren werden in der Mathematik meist dann definiert, wenn es sich um eine häufige, immer wiederkehrende Vorschrift handelt, meist eine ein- oder zweistellige Verknüpfung. Die Argumente dieser Verknüpfung heißen Operanden. Die Operatoren werden durch ein spezielles, kennzeichnendes mathematisches Symbol (ein spezielles Schriftzeichen der Formelschreibweise) dargestellt.[1]

Beispiele:

Operand[Bearbeiten | Quelltext bearbeiten]

Die Argumente, auf die man einen Operator anwendet, heißen Operanden. Beim Ausdruck sind also die Zahlen und die Operanden, die mit dem zweiseitigen Operator verknüpft sind.

Operatoren in der Funktionalanalysis[Bearbeiten | Quelltext bearbeiten]

In der Funktionalanalysis hat man es mit Vektorräumen zu tun, deren Elemente selbst Funktionen sind. Um die Elemente dieser Vektorräume besser von den Abbildungen zwischen solchen Vektorräumen zu unterscheiden, nennt man letztere auch Operatoren. Abbildungen von Funktionenräumen in den Körper der reellen oder komplexen Zahlen heißen auch Funktional.[2] Spezielle Klassen von Operatoren sind etwa kompakte Operatoren oder Fredholm-Operatoren.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Bekannte Beispiele für Operatoren, die einer Funktion eine Zahl oder eine andere Funktion zuordnen, sind:

Lineare und nichtlineare Operatoren[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Linearer Operator

In Funktionalanalysis betrachtet man Eigenschaften von Abbildungen zwischen (unendlichdimensionalen) Banachräumen. Lineare Abbildungen heißen lineare Operatoren, nichtlineare Abbildungen werden nichtlineare Operatoren genannt.

Operatoren der Physik[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Observable

Observable in der Quantenmechanik sind Operatoren:

Der Dichteoperator gibt für ein Ensemble die Wahrscheinlichkeit an, mit der sich ein herausgegriffenes System in einem bestimmten Zustand befindet.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Formelzeichen, Formelsatz, Mathematische Zeichen und Begriffe. DIN-Taschenbuch 202. 1994-07.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Alonzo Church: Introduction to Mathematical Logic. Princeton University Press, 1996, ISBN 0-691-02906-7, S. 39 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Klaus Deimling: Nichtlineare Gleichungen und Abbildungsgrade. Springer-Verlag, Berlin/ Heidelberg/ New York 1974, ISBN 3-540-06888-0.