Dies ist ein als exzellent ausgezeichneter Artikel.

Orionnebel

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Emissionsnebel
Daten des Orionnebels
Aus verschiedenen Aufnahmen des Hubble-Weltraumteleskop aus den Jahren 2004 und 2005 zusammengesetztes Falschfarbenbild des Orionnebels. Links oberhalb der Bildmitte ist der De Mairans Nebel zu sehen.
Aus verschiedenen Aufnahmen des Hubble-Weltraumteleskop aus den Jahren 2004 und 2005 zusammengesetztes Falschfarbenbild des Orionnebels. Links oberhalb der Bildmitte ist der De Mairans Nebel zu sehen.
Sternbild Orion
Position
ÄquinoktiumJ2000.0, Epoche: J2000.0
Rektaszension 5h 35,3m [1]
Deklination −5° 23,5′ [1]
Erscheinungsbild
Scheinbare Helligkeit (visuell) 3,7 mag  [2]
Winkelausdehnung 60′ [3]
Ionisierende Quelle
Bezeichnung θ¹ Orionis C1 
Typ Stern 
Physikalische Daten
Zugehörigkeit Milchstraße 
Entfernung [4] (1350 ± 23) Lj
((414 ± 7) pc)
Masse 700–2100 M [5][6][7]
Durchmesser 24 Lj
Alter 3 Millionen Jahre [8]
Geschichte
Entdeckung N.-C. F. de Peiresc
evtl. historisch
Datum der Entdeckung 1610
Katalogbezeichnungen
 NGC 1976 • GC 1179 • h 360 • M 42 • LBN 974 • Sh  2-281

Der Orionnebel (Katalogbezeichnung M 42 oder NGC 1976) ist ein Emissionsnebel im Sternbild Orion. Durch die relativ große scheinbare Helligkeit oberhalb der 4. Magnitude ist der Nebel mit bloßem Auge als Teil des Schwertes des Orion südlich der drei Sterne des Oriongürtels gut sichtbar.[2] Er besitzt eine Winkelausdehnung von etwa einem Grad.

Der Orionnebel entwickelte sich aus einem Teil einer viel größeren interstellaren Molekülwolke und besteht überwiegend aus Wasserstoff. In dem Nebel entstehen Sterne, deren ionisierende Strahlung den Nebel im sichtbaren Bereich leuchten lässt. Er wird daher auch als H-II-Gebiet klassifiziert.[3] Der Nebel ist etwa 414 Parsec[4] (1350 Lichtjahre) entfernt und eines der aktivsten Sternentstehungsgebiete in der galaktischen Nachbarschaft der Sonne, weshalb er ein bevorzugtes Untersuchungsobjekt zur Erforschung der Sternentstehung ist. Er wird sich voraussichtlich zu einem den Plejaden ähnlichen offenen Sternhaufen entwickeln.[9]

Die Hauptionisationsquelle des Orionnebels ist der Stern θ¹ Orionis C1, der mit seiner mehr als 200.000-fachen Leuchtkraft der Sonne zugleich einer der leuchtkräftigsten bekannten Sterne ist. Der unmittelbar benachbarte und ähnlich beschaffene De Mairans Nebel besitzt dagegen eine andere ionisierende Quelle und ist daher nicht Teil des Orionnebels.

Entdeckung und Erforschung[Bearbeiten | Quelltext bearbeiten]

Obwohl der Orionnebel unter guten Bedingungen als einziger Emissionsnebel mit bloßem Auge sichtbar ist,[10][11] blieb die besondere Gestalt vor dem 17. Jahrhundert in europäischen, arabischen und chinesischen Schriften unerwähnt:[12][13][14] Der rund 2000 Jahre alte Almagest,[15] al-Sūfīs Buch der Fixsterne[16] und die neuzeitliche Uranometria notieren den Orionnebel lediglich als einen Stern der Magnitude 3 bis 4. Nachdem mit den ersten Fernrohren detaillierte Beobachtungen möglich geworden waren, entwickelte sich der Orionnebel aufgrund seiner Nähe zu einem der besterforschten Sternentstehungsgebiete.[17][18]

Äußere Form[Bearbeiten | Quelltext bearbeiten]

Die vermutlich früheste dem Orionnebel zuordenbare Beschreibung datiert aus dem Jahr 1610. In einer handschriftlichen Notiz[19] des französischen Astronomen Nicolas-Claude Fabri de Peiresc wird ein Objekt bestehend aus zwei Sternen in einem leuchtenden „Wölkchen“ inmitten des Sternbildes Orion erwähnt. Es ist jedoch nicht sicher, ob damit tatsächlich der Orionnebel mit den beiden Sternen θ¹ und θ² Orionis gemeint ist, wie seit Anfang des 20. Jahrhunderts gemutmaßt wird.[20][21] Die 1619 von Johann Baptist Cysat und Volpert Motzel beiläufig veröffentlichte Beobachtung des Nebels[22] verglich diesen mit einem Kometen. Sie fand jedoch nur wenig Beachtung,[23] genauso wenig wie die Skizzierung und Katalogisierung durch Giovanni Battista Hodierna aus dem Jahr 1654.[10]

Daher galt lange Zeit Christiaan Huygens als der Entdecker, der im Jahr 1659 eine Umrisszeichnung des Nebels veröffentlichte.[23] Der von ihm abgebildete, besonders helle Bereich des Nebels wurde infolge als Huygens-Region bezeichnet. Charles Messier verzeichnete den Nebel in seinem erstmals 1774 publizierten Katalog als 42. Eintrag, ergänzt um eine detaillierte Abbildung. Friedrich von Hahn beschrieb seine Struktur kurz darauf

„… als eine helle scintillirende Wolke. Es hat aber das Ansehen, als wenn der in der Nachbarschaft derselben befindlich völlig schwarze Nebel sich bis hinter jene Wolke erstreckte, welche dadurch einem glänzendem Gewebe auf einem dunklen Grunde ähnlich wird.“[24]

Verbesserte Teleskope ließen in der Folgezeit immer lichtschwächere Teile des Orionnebels erkennen, sodass zunehmend detaillierte Abbildungen entstanden, wenngleich auch die individuelle Wahrnehmung des Beobachters die Abbildung offenbar deutlich beeinflusste.

Bereits Messier überlegte, ob man aus unterschiedlichen Darstellungen der Huygens-Region folgern könne, dass sich diese über die Zeit verändere. Wilhelm Herschel sah dies im Jahr 1811 aufgrund eigener und früherer Beobachtungen als erwiesen an.[25] Rund 70 Jahre später trug Edward Singleton Holden in einer umfassenden Monografie den damaligen Kenntnisstand zusammen. Er diskutierte die verschiedenen Abbildungen und kam zu dem Schluss, dass trotz der unterschiedlichen Darstellungen der Orionnebel seit Mitte des 18. Jahrhunderts seine Form wohl nicht dafür jedoch seine Helligkeit verändert hat.[26]

Henry Draper nahm im Jahr 1880 das erste Foto des Nebels auf, das zugleich als die erste astrofotografische Aufnahme eines nichtstellaren Objektes außerhalb des Sonnensystems gilt. Die Technik wurde schnell verbessert, und Andrew Ainslie Commons ausgezeichnete Aufnahme aus dem Jahr 1883 zeigte bereits mehr Details als mit dem bloßen Auge durch das gleiche Fernrohr zu erkennen waren. Die zuvor vermuteten Veränderungen des Orionnebels bestätigten die in der Folgezeit aufgenommenen Fotografien indes nicht.[27] Mit dem zu dieser Zeit beginnenden Verständnis der Physik des Orionnebels zielten weitere Untersuchungen zunehmend auf bestimmte Aspekte der Physik; die äußere Form als alleiniges Untersuchungsziel trat zunehmend in den Hintergrund. Beispiele aus dem 21. Jahrhundert sind die hochaufgelösten Aufnahmen des Hubble-Weltraumteleskops sowie für den Infrarotbereich Aufnahmen des VLTs und der Weltraumteleskope Spitzer, WISE und Herschel.

Aufbau und Zusammensetzung[Bearbeiten | Quelltext bearbeiten]

Galileo Galileis Skizze der Komponenten von θ Orionis, die er im Jahr 1617 mithilfe eines Fernrohrs erkannte: Die engstehende Gruppe c, g, i bildet einen Teil des Trapeziums, wobei g den hellsten Stern θ¹ Orionis C kennzeichnet; a und b werden heute mit θ² Orionis B und A bezeichnet.

Wenngleich auch Galileo Galilei den Nebel nicht erwähnte, so stellte er doch im Jahr 1617 mithilfe seines Teleskops fest, dass θ Orionis nur scheinbar ein zentraler Stern ist. Statt eines Einzelsterns beobachtete er fünf verschiedene Komponenten,[31] wobei drei davon eine engstehende Gruppe bilden. Später entdeckte Jean-Dominique Cassini (nach Holden)[26] einen vierten dieser Gruppe zugehörigen Stern, woraufhin sie Trapezium genannt wurde.[32] In der Folgezeit konnten mithilfe verbesserter Teleskope dem Trapezium weitere Sterne zugeordnet werden und auch eine Katalogisierung des Umfelds vorgenommen werden. Ende des 19. Jahrhunderts waren bereits mehrere hundert Sterne des 1,5° durchmessenden Sternhaufens im Orionnebel erfasst worden.[33][34] Jedoch hatte schon Messier festgestellt, dass das sichtbare Licht der dortigen Sterne nicht ausreicht, das Leuchten des Nebels zu erklären.

Der Ende des 19. Jahrhunderts von William Henry Pickering und Edward Barnard beobachtete Wolkenkomplex im Orion beginnt oberhalb der drei Gürtelsterne, erstreckt sich hinab zu Rigel und ist links durch Barnard’s Loop konturiert. Untersuchungen Anfang der 1920er Jahre zeigten, dass der etwas unterhalb der Bildmitte liegende Orionnebel ein lichtemittierender Teil des Wolkenkomplexes ist.

Von William Lassell wurde Mitte des 19. Jahrhunderts die außergewöhnliche „erbsengrüne“ Farbe des Orionnebels festgehalten[35] und nachfolgende spektroskopische Untersuchungen durch William Huggins wiesen bereits im Jahr 1865 auf die gasartige Natur des die Sterne umgebenden Nebels hin. Neben zunächst unbekannten grünen Spektrallinien waren diejenigen vom Wasserstoff deutlich zu erkennen.[36] Die bereichsweise unterschiedliche Verteilung der verschiedenen Gase wurde von Johannes Franz Hartmann im Jahr 1905 anhand von Fotografien mit schmalbandigen Filtern gezeigt,[37] wenngleich die unbekannten Spektrallinien erst in den 1920er Jahren ionisiertem Sauerstoff zugeordnet werden konnten. Durch Bestimmung der Dopplerverschiebung der bekannten Spektrallinien des Wasserstoffs bestimmte im Jahr 1902 Hermann Carl Vogel Strömungen innerhalb des Nebels.[38] Henri Buisson, Charles Fabry und Henry Bourget bestätigten dies im Jahr 1914 durch interferometrische Vermessung der Spektrallinien und leiteten aus der Linienbreite eine Obergrenze von 15.000 Kelvin für die Gastemperatur ab.[39] Bald darauf zeigte sich in langbelichteten Aufnahmen, dass der Orionnebel der leuchtende Teil einer weitaus größeren Wolke ist. Einige Forscher vermuteten daraufhin, dass die von den Sternen des Trapeziums ausgesandte Ultraviolettstrahlung die sie umgebenden Gase erhitzt und durch Ionisation zum Leuchten anregt.[40][41][42] Mit der zwischenzeitlich gewonnenen Kenntnis, dass eine der Spektrallinien vom Element Sauerstoff stammt, gelang 1931 eine genauere Temperaturbestimmung der leuchtenden Gase. Unter der Berücksichtigung von Strömungen ergab sich ein Wert von 11.000 Kelvin,[43] der nur wenig verschieden von den Ergebnissen nachfolgender Untersuchungen war, die auf eine Temperatur von 10.000 Kelvin im Zentrum hindeuteten.[18] Zu dieser Zeit nahmen Walter Baade und Rudolph Minkowski an einigen der hellsten Sterne Messungen vor, um deren untypische Spektren erklären zu können. Die spektrometrischen Untersuchungen ergaben überdies, dass der Nebel große Mengen an kohlenstoff- und eisenhaltigen Staubpartikeln mit einer Größe von über 100 µm enthalten müsse.[44] Weitere Spektroskopien des Nebels zeigten, dass er außer Wasserstoff auch etwa zehn Prozent Helium enthält und die Anteile von Sauerstoff, Kohlenstoff, Neon, Stickstoff, Schwefel und Argon weniger als ein Prozent betragen – womit eine Ähnlichkeit zur Sonne festgestellt werden konnte.[45] Die mit ebenfalls weniger als einem Prozent vorhandenen Elemente Magnesium, Silizium und Eisen sind zu rund 90 Prozent als Oxid im stellaren Staub gebunden.[46]

Visualisierung der dreidimensionalen Struktur des Orionnebels und die Lage der eingebetteten Sterne vor der Ionisationsfront und hinter einem Schleier aus neutralem Gas. Ausschnitt einer Animation für das IMAX, die Perspektive ist etwa senkrecht zur Sicht mittels Teleskops.[47]

Als stärkste Quelle für ultraviolette Strahlung wurde der auch optisch hellste Stern des Trapeziums, θ¹ Orionis C identifiziert; detaillierte physikalische Modelle für die Anregung des Nebels zum Leuchten durch Ultraviolettstrahlung folgten in den 1950er Jahren.[48] Untersuchungen in den 1960er und 1970er Jahren ergaben, dass die Strömungsgeschwindigkeiten vom Ionisationsgrad und somit vom Abstand zu θ¹ Orionis C abhingen und zeigten immer deutlicher, dass die Trapezsterne vor der Molekülwolke in einer sphärischen Höhlung liegen und lediglich deren Grenzschicht ionisiert wird.[49][50][18][51] Die Dicke von 0,1 pc und die dreidimensionale Lage der Ionisationsfront wurde Anfang der 1990er Jahre ermittelt und in den Folgejahren dann aufwendig visualisiert.[52][53][54] Dabei fanden weiterentwickelte Modelle Anwendung, die zu einem späteren Zeitpunkt insbesondere mithilfe hochaufgelöster Aufnahmen der Nebelemission des Hubble-Weltraumteleskops nochmals verbessert werden konnten.[55][47] Ebenfalls in dieser Zeit wurde ein Schleier aus nicht-ionisiertem Gas im Vordergrund entdeckt, eingehender charakterisiert und den Modellen hinzugefügt.[56] Die resultierenden Modelle geben einen genaueren Aufschluss über die Teilchendichte in der Ionisationfront, die in der Huygens-Region rund 9000 ionisierte Atome pro Kubikzentimeter erreicht – einen für H-II-Gebiete typischen Wert.[56]

Zwei Aufnahmen des Trapezhaufens im Orionnebel, mit unterschiedlichen Spektren.
Links sichtbares Licht: Verteilung von Wasserstoff (grün), Sauerstoff (blau) und Stickstoff (rot).
Rechts Infrarot: Sterne treten hervor.
Langbelichtete Infrarotaufnahme, erstellt mit dem Very Large Telescope und der Kamera HAWK-I

Durch Infrarotaufnahmen, bei denen ein Farbfilter sichtbares Licht und damit viele Spektrallinien des Nebels sperrte, gelang es Robert Julius Trumpler Anfang der 1930er Jahre, einige Sterne in der Umgebung des Trapeziums näher zu identifizieren. Er beschrieb dabei einen von ihm als „Trapezium cluster“ (Trapezhaufen) bezeichneten Bereich mit der Ausdehnung von einer Bogenminute, der 41 Sterne umfasst.[57] Von einem noch größeren Bereich mit einem Radius von zehn Bogenminuten um die Trapezsterne herum berichtete Guillermo Haro im Jahr 1953 und benannte diesen als „Orion Nebula Cluster“.[58] Spätere Betrachtungen ergaben jedoch, dass es sich um keine separaten Gebiete handelt.[59] Vielmehr gehören die zuvor genannten Cluster zu einer einzigen Anhäufung von insgesamt etwa 3500 Sternen, deren Gesamtmasse wahrscheinlich 700–2100 Sonnenmassen beträgt.[5][6][7] Weiteren Infrarot-Untersuchungen mit größerem Teleskop und empfindlicheren Detektoren konnten im Jahr 2008 eine Vielzahl von braunen Zwergen und Objekten planetarer Masse aufspüren. Es zeigte sich, dass im Orionnebel wesentlich mehr Objekte dieser Art vorhanden sind als man bis dahin angenommen hatte.[60][61] Nachfolgende Untersuchungen mit der aufgerüsteten Infrarotkamera WFC3 des Hubble-Weltraumteleskops vervollständigten das Bild.[62]

Entstehungszeitraum[Bearbeiten | Quelltext bearbeiten]

Entstehende Sterne mit zirkumstellaren Scheiben (orange und schwarz) im Orionnebel, Ausschnitt der Aufnahme des Hubble-Weltraumteleskops

Bereits Anfang des 19. Jahrhunderts vermutete Wilhelm Herschel, dass sich aus der in den Nebeln enthaltenen Materie durch gravitative Kompression Sterne formen.[63] Fotografische und spektroskopische Untersuchungen Anfang des 20. Jahrhunderts belegen diese These,[64] das Verständnis zum zeitlichen Ablauf entwickelte sich jedoch erst später. Ende der 1950er Jahre verglich Kaj Aage Gunnar Strand zunächst Farben-Helligkeits-Diagramme des Orionhaufens mit denen eines anderen Sternhaufens, die zuvor von Merle Walker gemacht worden waren. Er schloss daraus auf ein Alter von weniger als drei Millionen Jahren. Aufgrund vorhandener T-Tauri-Sterne und deren aus verschieden alten fotografischen Aufnahmen errechnetem Alter von 300.000 Jahren vermutete er jedoch, dass die gravitative Sternenbildung noch andauern müsse.[65] Untersuchungen im Infrarotspektrum wie die von Eric Becklin und Gerald Neugebauer aus dem Jahr 1965 gaben kurz darauf Beispiele für noch andauernde Sternentstehungen. Sie zeigen u. a. ein nur eine Bogenminute von θ¹ Orionis entferntes und nur im Infrarotbereich detektierbares Objekt. Dieses neuartige, nach seinen Entdeckern benannte Becklin-Neugebauer-Objekt mit einer Temperatur von lediglich 700 K wurde daraufhin als Protostern eingeordnet.[66] Zur selben Zeit entdeckte man auch den ebenfalls sehr kalten und ebenfalls nur im Infraroten detektierbaren nahegelegenen Kleinmann-Low-Nebel, in dem etliche Sterne entstehen. Im Jahr 1969 vermaß Walker in Arealen geringer Nebelemission eine Vielzahl von Sternen photometrisch in verschiedenen Spektralbereichen und konnte so deren Alter auf rund drei Millionen Jahre festsetzen.[8] Rund zwanzig Jahre später wandten George Howard Herbig und Donald Terndrup dieselbe Methode auf den sichtbaren und infraroten Spektralbereich an und stellten fest, dass die Sterne überwiegend jünger als eine Million Jahre sein müssen.[67] Anfang der 1990er Jahre gelang es durch hochaufgelöste Aufnahmen des Hubble-Weltraumteleskops, eine Vielzahl in Entstehung begriffener Sterne anhand ihrer zirkumstellaren Scheibe (Proplyd) zu identifizieren.[52]

Der Orionnebel selbst war vermutlich noch vor 50.000 Jahren nicht sichtbar, da die jungen O- und B-Sterne von der Molekülwolke umschlossen waren.[17] Anfang der 1960er errechneten Franz Daniel Kahn, Thuppalay Kochu Govinda Menon und Peter O. Vanderport, dass die Molekülwolke in der Zwischenzeit durch Photoionisation von diesen Sternen teilweise verdampft worden sein muss. Eine sich dabei um die über tausend Sterne des Sternhaufens gebildete Einbuchtung ermöglichte in der Folge, dass die Sterne von der Erde aus gesehen werden konnten.[68][69]

Entfernung und Größe[Bearbeiten | Quelltext bearbeiten]

Erste Entfernungsbestimmungen des Orionnebels waren noch mit deutlichen Unsicherheiten und Diskrepanzen behaftet. So ermittelte mit dem Einzug der Fotografie in die Astronomie William Henry Pickering die Eigenbewegung einiger Sterne des Orionnebels und schätzte daraus im Jahr 1895 eine Entfernung von 1000 Lichtjahren.[70] Gut zwanzig Jahre später verglich er dann die scheinbare Helligkeit von Sternen mit Sternen gleicher Spektralklasse und bekannter Entfernung und leitete aus dieser spektroskopischen Parallaxe 2000 Parsec (6520 Lichtjahre) ab. Er änderte den Wert zwei Jahre später auf 500 Parsec, nachdem zwischenzeitlich Jacobus C. Kapteyn mit der gleichen Methode 180 Parsec errechnet hatte.[71] Anhand des eingebetteten Trapezium- und des nahegelegenen NGC-1981-Sternhaufens bestimmte Trumpler im Jahr 1931 wiederum mittels spektroskopischer Parallaxe Entfernungen von 500 beziehungsweise 400 Parsec; eine von ihm entwickelte Sternhaufen-Größenklassifikation lieferte 660 beziehungsweise 470 Parsec.[57] Entfernungsbestimmungen aus den 1940er bis 1980er Jahren ergaben zwischen 300 und 483 Parsec.[4] Für eine satellitengestützte Triangulation durch Hipparcos eignete sich nur ein Stern im Orionnebel, womit deren Ergebnis mit erheblichen Unsicherheiten behaftet ist.[4] Eine genaue trigonometrische Entfernungsmessung konnte schließlich im Jahr 2007 mit Hilfe des Very Long Baseline Array an vier Radiosternen erfolgen. Sie ortete den Orionnebel 1350 ± 23 Lichtjahre entfernt.[4] [72]

Da der Orionnebel keine scharfe Kontur aufweist, hängt die zuerkannte Größe des Nebels von der Wahl der Methode zur Festlegung seines Randes ab. Mitte des 20. Jahrhunderts katalogisierte Stewart Sharpless eine Vielzahl von H-II-Regionen und schrieb dabei dem Orionnebel zu Vergleichszwecken einen scheinbaren Durchmesser von 60 Bogenminuten zu.[3] Dieser Winkel entspricht in einer Entfernung von 1350 Lichtjahren einer Ausdehnung von 24 Lichtjahren. Lynds’ Catalogue of Bright Nebulae notiert 60 × 90 Bogenminuten.

Beobachtbarkeit[Bearbeiten | Quelltext bearbeiten]

Lage des Orionnebels im Sternbild Orion, wie es mit bloßem Auge wahrgenommen werden kann (Bezeichnung der hellsten Sterne nach der Uranometria): Der Orionnebel liegt 5° südlich des mittleren der Gürtelsterne ζ, ε und δ und ist mit einem Kreis um θ Orionis gekennzeichnet.

Der Orionnebel lässt sich am besten in den Wintermonaten beobachten, wenn er abends in Mitteleuropa 30–40° hoch im Süden steht, oder aber im Oktober gegen 5 Uhr früh.[73] Trotz seiner Helligkeit kann mit dem bloßem Auge jedoch nur eine für Sterne untypische leichte Unschärfe wahrgenommen werden;[11] erst mit Hilfsmitteln ist es möglich, zwischen dem Nebel und den darin befindlichen Sternen zu differenzieren.[74] Bereits mit einem Fernglas 10 × 50 kann man die vier Komponenten θ¹ Orionis und θ² Orionis A–C[74] und auch Filamente des Nebels erkennen. Weniger helle Partien des Nebels und auch die dunkle Einbuchtung in der Huygens-Region sind bereits mit einem Fernglas des Typs 10 × 70 erkennbar; der Orionnebel ist so in einem Gebiet von 30 × 45 Bogenminuten beobachtbar.[74]

Orionnebel, aufgenommen mit einem Amateurfernrohr mit 25 cm Öffnung, nachbearbeitet (Norden ist links)

Mit stärker vergrößernden Teleskopen sind die vier Trapezsterne einzeln auszumachen, und der Umriss der Huygens-Region ist deutlich zu sehen.[74] Teleskope mit 12 cm Öffnungsweite lassen in dieser Region zusätzlich kleine helle Inseln und dunkle Kanäle hervortreten, ein 60-cm-Teleskop zeigt bereits einen Detailgrad, der mit der Skizze aus Beobachtungen durch das Leviathan-Teleskop vergleichbar ist.[74] Die Skizze von John Herschel gibt einen Eindruck über die Wahrnehmbarkeit des gesamten Nebels in einem Teleskop dieser Größe. Das Leuchten der vier Trapez-Sterne und von θ² Orionis dominiert die Nebelstrukturen jedoch viel stärker, als es diese Skizzen zeigen können.

Bereits mit Teleskopdurchmessern unter 30 cm ist die grün-bläuliche Farbe der Huygens-Region wahrnehmbar.[74] Dieser Eindruck verstärkt sich mit zunehmender Öffnung.[74] Ab 30 cm erscheinen Kanten dieser Region orange-rot und mit einem Durchmesser von 50 cm zeigen sich auch Farben außerhalb dieser Region.[74] Dennoch ist – im Vergleich zu detailreichen Farbfotos, die wie obige Bilder durch lange Belichtungszeiten und Bildnachbearbeitung entstehen – der Farbeindruck selbst durch lichtstarke Teleskope wesentlich schwächer.

Rezeption[Bearbeiten | Quelltext bearbeiten]

Chinesische Sternkarte: Das Sternbild Shen (參) mit dem als roten Punkt gezeichnetem Orionnebel ähnelt dem Sternbild Orion

Der Orionnebel hat auch außerhalb der Astronomie eine gewisse Bekanntheit erlangt. Das spiegelt sich vor allem in Mythen, in der Literatur, in Filmen und auch in Videospielen wieder. Beispielsweise gilt er als Teil einer Sternkonstellation in der Kultur des mesoamerikanischen Volks der Maya als Abbild des Rauchs einer Feuerstelle[75] oder wird von ihnen durch eine Fackel symbolisiert,[76] in der chinesischen Kultur ist er von alters her als markanter Punkt im Sternbild Shen (參) bekannt. Als eigenständiges Objekt stellt der Orionnebel in Werken der Science Fiction mitunter einen signifikanten Teil der Handlungsgeschichte dar,[77] wie im Computerspiel Elite: Dangerous in dessen Verlauf ein virtuelles Abbild des Nebels vom Spieler sogar besucht werden kann. In der Pop- und Alltagskultur hat der Orionebel ebenfalls Einzug gehalten. Dazu zählt das musikalische und graphische Schaffen verschiedener Künstler aber auch Aufnahmen des Hubble-Weltraumteleskops auf Postern, Puzzles, T-Shirts und anderen Alltagsgegenständen.[78]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Weitere Abbildungen und allgemeine Artikel[Bearbeiten | Quelltext bearbeiten]

 Commons: Orionnebel – Sammlung von Bildern, Videos und Audiodateien

Berichte über aktuelle Forschungen (Auswahl)[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. NED data for the Messier Objects
  2. a b Ronald Stoyan, Stefan Binnewies, Susanne Friedrich: Atlas der Messier-Objekte. 2006, ISBN 978-3-938469-07-1, S. 171.
  3. a b c Stewart Sharpless: A Catalogue of H II Regions. In: Astrophysical Journal Supplement. 4, 1959, S. 257–279. bibcode:1959ApJS....4..257S.
  4. a b c d e Karl M. Menten, M. J. Reid, J. Forbrich, A. Brunthaler: The Distance to the Orion Nebula. In: Astronomy & Astrophysics. 474, Nr. 2, 2007, S. 515–520. bibcode:2007arXiv0709.0485M. doi:10.1051/0004-6361:20078247.
  5. a b Pavel Kroupa, Monika G. Petr, Mark J. McCaughrean: Binary stars in young clusters: models versus observations of the Trapezium Cluster. In: New Astronomy. 4, Nr. 7, 1999, S. 495–519. arxiv:astro-ph/9906460v1. bibcode:1999NewA....4..495K.
  6. a b Lynne A. Hillenbrand: On the Stellar Population and Star-Forming History of the Orion Nebula Cluster. In: Astronomical Journal. 113, 1997, S. 1733–1768. bibcode:1997AJ....113.1733H.
  7. a b Lynne A. Hillenbrand, Lee W. Hartmann: A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics. In: The Astrophysical Journal. 492, Nr. 2, 1998, S. 540–553. bibcode:1998ApJ...492..540H.
  8. a b Merle F. Walker: Studies of extremely young clusters. V. Stars in the vicinity of the Orion nebula. In: Astrophysical Journal. 155, 1969, S. 447–468. bibcode:1969ApJ...155..447W.
  9. Pavel Kroupa, Sverre J. Aarseth, Jarrod Hurley: The formation of a bound star cluster: from the Orion nebula cluster to the Pleiades. In: Monthly Notices of the Royal Astronomical Society. 321, Nr. 4, 2001, S. 699–712. arxiv:astro-ph/0009470. bibcode:2001MNRAS.321..699K.
  10. a b Giovanni Battista Hodierna: De Amirandis Coeli Characteribus. Nicolai Bua, Panormi 1654, doi:10.3931/e-rara-444. G. Fodera-Serio, L. Indorato, P. Nastasi: G. B. Hodierna’s Observations of Nebulae and his Cosmology. In: Journal for the History of Astronomy. 16, Nr. 1, 1985, S. 1–36. bibcode:1985JHA....16....1F.
  11. a b Charles Robert O’Dell: The Orion Nebula: Where Stars are Born. The Belknap Press of Harvard University Press, Cambridge, Massachusetts / London, England 2003, ISBN 978-0-674-01183-0, S. 3, bibcode:2003onws.book.....O.
  12. K. G. Jones: The Search for the Nebulae-I. In: Journal of the British Astronomical Association. 78, 1968, S. 256–267. bibcode:1968JBAA...78..256J.
  13. K. G. Jones: The Search for the Nebulae-II. In: Journal of the British Astronomical Association. 78, 1968, S. 360–368. bibcode:1968JBAA...78..360J.
  14. T. G. Harrison: The Orion Nebula – where in History is it?. In: Quarterly Journal of the Royal Astronomical Society. 25, Nr. 1, 1984, S. 65–79. bibcode:1984QJRAS..25...65H.
  15. Claudius Ptolemaeus: Almagestum. Petrus Lichtenstein, Venedig 1515, S. 86 (Digitalisat der Universitätsbibliothek Wien, S. 177 im PDF).
  16. H. C. F. C. Schjellerup: Description des Étoiles Fixes: Composeés au Milieu du Dixième Siècle de Notre Ére par l’Astronome Persan Abd-al-Rahman al-Šūfī. Commissionnaires de l’Académie Impériale des sciences, St. Petersburg 1874, S. 209, bibcode:1874defc.book.....S, urn:nbn:de:gbv:3:5-19654.
    Anmerkung: Der auf Seite 19 vorgenommene Vergleich mit der Durchmusterung von Argelander kann für θ Orionis nur eine Mindesthelligkeit liefern, da der mit der 4. Magnitude verzeichnete Eintrag BD-05 1315 nur den Teil θ¹ Orionis umfasst.
  17. a b August Muench, Konstantin Getman, Lynne Hillenbrand, Thomas Preibisch: Star Formation in the Orion Nebula I: Stellar Content. In: Bo Reipurth (Hrsg.): Handbook of Star Forming Regions. 2008, arxiv:0812.1323v1, bibcode:2008hsf1.book..483M. Siehe S. 1 im arxiv-Dokument.
  18. a b c B. Balick, R. H. Gammon, R. M. Hjellming: The structure of the Orion nebula. In: Publications of the Astronomical Society of the Pacific. 86, 1974, S. 616–634. bibcode:1974PASP...86..616B. doi:10.1086/129654.
  19. Digitalisat bei Commons
  20. Guillaume Bigourdan: La découverte de la nébuleuse d’Orion (N. G. C. 1976) par de Peiresc. In: Comptes rendus de l’Académie des sciences. 162, 1916, S. 489–490.
  21. Harald Siebert: Die Entdeckung des Orionnebels. Historische Aufzeichnungen aus dem Jahr 1610 neu gesichtet In: Sterne und Weltraum. 11, 2010, S. 32–42.
  22. Johann Baptist Cysat, Volpert Motzel: Mathemata Astronomica De Loco, Motu, Magnitudine, Et Causis Cometae. Elisabeth Angermaier, Ingolstadt 1619, S. 75 (gbv.de).
  23. a b Rudolf Wolf: Über den Nebelfleck im Orion. In: Astronomische Nachrichten. 38, Nr. 7, 1854, S. 109. bibcode:1854AN.....38..109..
  24. Friedrich von Hahn: Einige, mit einem vorzüglichen fünf füßigem Dollondischen Fernrohr angestellte Beobachtungen. In: Johann Elert Bode (Hrsg.): Astronomisches Jahrbuch für das Jahr 1797. Berlin 1794, S. 157 (Digitalisat bei Google Books).
  25. Wilhelm Herschel: Astronomical Observations Relating to the Construction of the Heavens, Arranged for the Purpose of a Critical Examination, the Result of Which Appears to Throw Some New Light upon the Organization of the Celestial Bodies. In: Philosophical Transactions of the Royal Society. 101, 1811, S. 269–336. bibcode:1811RSPT..101..269H. Siehe S. 320–325.
  26. a b Edward Singleton Holden: Monograph of the central parts of the nebula of Orion. In: Astronomical and Meteorological Observations made at the U.S. Naval Observatory. 18, S. a1–a230. bibcode:1882USNOM..18A...1H.
  27. Brenda G. Corbin: Edward Singleton Holden (1846–1914): His career at the U. S. Naval Observatory from 1873 to 1881. In: Bulletin of the American Astronomical Society. 42, 2010, S. 301. bibcode:2010AAS...21530405C.
  28. Anton Pannekoek: A History of Astronomy. 1989 (Eingeschränkte Vorschau bei Google books).
  29. Peter Louwman: Christiaan Huygens and his telescopes. In: Karen Fletcher (Hrsg.): Proceedings of the International Conference “Titan – from discovery to encounter”. 2004, S. 103–114, bibcode:2004ESASP1278..103L.
  30. Charles Messier: Catalogue des Nébuleuses & des amas d’Étoiles, que l’on découvre parmi les Étoiles fixes sur l’horizon de Paris; observées à l’Observatoire de la Marine, avec differens instruments. In: Mémoires de l’Académie Royale des Sciences for 1771. 1774, S. 435–461 + Pl. VIII. bibcode:1774MmARS1771..435M. Siehe S. 447, 451: 6 pouces sind 16,242 cm
  31. Galileo Galilei, Antonio Favaro, Isidoro del Lungo, Valentino Cerruti, Giovanni Virginio Schiaparelli, Gilberto Govi, Umberto Marchesini, Vittorio Lami: Le opere di Galileo Galilei. III/2. Florenz 1907, S. 880, bibcode:1890odgg.book.....G.
  32. Jean-Dominique Cassini: de Cometa anni 1652 et 1653. 1653 (online).
  33. Benjamin Apthorp Gould, Seth Carlo Chandler: Cordoba photographs. Photographic observations of star-clusters from impressions made at the Argentine national observatory, measured and computed with aid from Argentine Government. Nichols Press, Lynn (Massachusetts) 1897, bibcode:1897cppo.book.....G (online).
  34. Julius Scheiner: Über den Sternhaufen um ϑ Orionis. In: Astronomische Nachrichten. 147, Nr. 9, 1898, S. 149–154. bibcode:1898AN....147..149S.
  35. William Lassell: Observations of the Nebula of Orion, made at Valletta, with the Twenty-foot Equatoreal. In: Memoirs of the Royal Astronomical Society. 23, 1854, S. 53. bibcode:1854MmRAS..23...53L.
  36. William Huggins: On the Spectrum of the Great Nebula in the Sword-handle of Orion. In: Proceedings of the Royal Society of London. 14, 1865, S. 39–42. bibcode:1865RSPS...14...39H.
  37. Johannes Franz Hartmann: Monochromatic Photographs of the Orion Nebula. In: Astrophysical Journal. 21, 1905, S. 389–399. bibcode:1905ApJ....21..389H.
  38. Hermann Carl Vogel: Radial Velocity of the Orion Nebula. In: Astrophysical Journal. 15, 1902, S. 302–309. bibcode:1902ApJ....15..302V.
  39. Henri Buisson, Charles Fabry, Henry Bourget: An application of interference to the the study of the Orion nebula. In: Astrophysical Journal. 40, 1914, S. 241–258. bibcode:1914ApJ....40..241B.
  40. Henry Norris Russell: Dark Nebulae. In: Proceedings of the National Academy of Sciences of the United States of America. 8, Nr. 5, S. 115–118. bibcode:1922PNAS....8..115R.
  41. M. Applegate, Harlow Shapley: On the Dwarf Variable Stars in the Orion Nebula. In: Harvard College Observatory Circular. 254, 1924, S. 1–4. bibcode:1924HarCi.254....1A.
  42. J. H. Moore: The Great Nebula in Orion. In: Astronomical Society of the Pacific Leaflets. 1, Nr. 9, S. 31–34. bibcode:1926ASPL....1...31M.
  43. R. D. H. Jones: The temperature of the Orion nebula. In: The Observatory. 54, 1931, S. 165–166. bibcode:1931Obs....54..165J.
  44. Walter Baade, Rudolph Minkowski: Spectrophotometric Investigations of Some O- and B-Type Stars Connected with the Orion Nebula. In: Astrophysical Journal. 86, 1937, S. 123–135. bibcode:1937ApJ....86..123B.
  45. C. Esteban, M. Peimbert, J. García-Rojas, M. T. Ruiz, A. Peimbert, M. Rodríguez: A reappraisal of the chemical composition of the Orion nebula based on VLT echelle spectrophotometry. In: Monthly Notices of the Royal Astronomical Society. 355, Nr. 1, 2014, S. 229–247. arxiv:astro-ph/0408249v1. bibcode:2004MNRAS.355..229E.
  46. S. Simón-Díaz, G. Stasińska: The chemical composition of the Orion star-forming region: II. Stars, gas, and dust: the abundance discrepancy conundrum. In: Astronomy & Astrophysics. 526, 2011, S. A48, 1–9. arxiv:1010.5903v1. bibcode:2011A&A...526A..48S.
  47. a b Toni Myers, Leonardo DiCaprio, James Neihouse, Micky Erbe, Maribeth Solomon. (2011). Hubble (3D) (Blu-ray, ursp. IMAX). Warner Home Video. 44 Minuten.
    Videoabschnitt über den Orionnebel bei Youtube
  48. Olin C. Wilson, Guido Münch, Edith Flather, Mary F. Coffeen: Internal Kinematics of the Orion Nebula. In: Astrophysical Journal Supplement. 4, S. 199–256. bibcode:1959ApJS....4..199W.
  49. C. R. O’Dell: The Orion Nebula and Its Associated Population In: Annual Review of Astronomy and Astrophysics. 39, 2001, S. 99–136. bibcode:2001ARA&A..39...99O.
  50. B. Zuckerman: A Model of the Orion Nebula. In: Astrophysical Journal. 183, 1973, S. 863–870. bibcode:1973ApJ...183..863Z.
  51. V. Pankonin, C. M. Walmsley, M. Harwit: The structure of the Orion Nebula – The ionized gas. In: Astronomy & Astrophysics. 75, Nr. 1–2, 1979, S. 34–43. bibcode:1979A&A....75...34P.
  52. a b C. R. O’Dell: Structure, motion, and composition of the Orion Nebula. In: Revista Mexicana de Astronomia y Astrofisica. 27, 1993, S. 55–58. bibcode:1993RMxAA..27...55O.
  53. Z. Wen, C. R. O’Dell: A three-dimensional model of the Orion Nebula. In: Astrophysical Journal, Part 1. 438, Nr. 2, 1995, S. 784–793. bibcode:1995ApJ...438..784W.
  54. D. Nadeau, J. Genetti, S. Napear, B. Pailthorpe, C. Emmart, E. Wesselak, D. Davidson: Visualizing stars and emission nebulae. In: Computer Graphics Forum. 20, Nr. 1, 2001, S. 27–33. Video.
  55. C. R. O’Dell, W. J. Henney, N. P. Abel, G. J. Ferland, S. J. Arthur: The Three-Dimensional Dynamic Structure of the Inner Orion Nebula. In: The Astronomical Journal. 137, Nr. 1, 2009, S. 367–382. bibcode:2009AJ....137..367O.
  56. a b C. R. O’Dell, G. J. Ferland, M. Peimbert: Structure and physical conditions in the Huygens region of the Orion nebula. In: Monthly Notices of the Royal Astronomical Society. 464, Nr. 4, 2017, S. 4835–4857. arxiv:1610.06595. bibcode:2017MNRAS.464.4835O.
  57. a b Robert Julius Trumpler: The Distance of the Orion Nebula. In: Publications of the Astronomical Society of the Pacific. 43, Nr. 254, 1931, S. 255–260. bibcode:1931PASP...43..255T.
  58. Guillermo Haro: Hα Emission Stars and Peculiar Objects in the Orion Nebula. In: Astrophysical Journal. 117, 1953, S. 73–82. bibcode:1953ApJ...117...73H.
  59. August Muench, Konstantin Getman, Lynne Hillenbrand, Thomas Preibisch: Star Formation in the Orion Nebula I: Stellar Content. In: Bo Reipurth (Hrsg.): Handbook of Star Forming Regions. 2008, arxiv:0812.1323v1, bibcode:2008hsf1.book..483M. Siehe S. 5 im arxiv-Dokument.
  60. Tief im Herzen des Orionnebels. VLT-Infrarotaufnahme bringt unerwartet viele Objekte niedriger Masse zu Tage. Abgerufen am 1. Januar 2017.
  61. H. Drass, M. Haas, R. Chini, A. Bayo, M. Hackstein, V. Hoffmeister, N. Godoy, N. Vogt: The bimodal initial mass function in the Orion Nebula Cloud. In: Monthly Notices of the Royal Astronomical Society. 461, Nr. 2, 2016, S. 1734–1744. arxiv:1605.03600. bibcode:2016MNRAS.461.1734D.
  62. M. Robberto, M. Andersen, T. Barman, A. Bellini, N. da Rio, S. de Mink, L. A. Hillenbrand, J. R. Lu, K. Luhman, C. F. Manara, M. Meyer, I. Platais, L. Pueyo, D. Soderblom, R. Soummer, S. Stahler, J. C. Tan: Toward a Complete Census of the Low Mass IMF in the Orion Nebula Cluster. 2015, bibcode:2015IAUGA..2258250R.
  63. Wilhelm Herschel: Astronomical Observations Relating to the Construction of the Heavens, Arranged for the Purpose of a Critical Examination, the Result of Which Appears to Throw Some New Light upon the Organization of the Celestial Bodies. In: Philosophical Transactions of the Royal Society. 101, 1811, S. 269–336. bibcode:1811RSPT..101..269H. Siehe S. 331.
  64. A. L. Cortie: Photographic evidence for the formation of stars from nebulae. In: The Observatory. 42, 1919, S. 398–401.
  65. Kaj Aage Gunnar Strand: Stellar Motions in the Orion Nebula Cluster. In: Astrophysical Journal. 128, 1958, S. 14–30. bibcode:1958ApJ...128...14S.
  66. Eric Becklin, Gerald Neugebauer: Observations of an Infrared Star in the Orion Nebula. In: Astrophysical Journal. 147, 1967, S. 799–802. bibcode:1967ApJ...147..799B.
  67. George Howard Herbig, Donald M. Terndrup: The Trapezium cluster of the Orion nebula. In: Astrophysical Journal. 307, 1986, S. 609–618. bibcode:1986ApJ...307..609H.
  68. Franz Daniel Kahn, Thuppalay Kochu Govinda Menon: Evolution of Gaseous Nebulae. In: Proceedings of the National Academy of Sciences of the United States of America. 47, Nr. 11, 1961, S. 1712–1716. bibcode:1961PNAS...47.1712K.
  69. Peter O. Vanderport: The Age of the Orion Nebula. In: Astrophysical Journal. 138, 1963, S. 294–296. bibcode:1963ApJ...138..294V.
  70. William Henry Pickering, Edward Charles Pickering: Investigations in astronomical photography. In: Annals of Harvard College Observatory. 32, 1895, S. 1–116. bibcode:1895AnHar..32....1P. Siehe S. 77–80.
  71. William Henry Pickering: The Distance of the Great Nebula in Orion. In: Harvard College Observatory Circular. 205, S. 1–8. bibcode:1917HarCi.205....1P.
  72. August Muench, Konstantin Getman, Lynne Hillenbrand, Thomas Preibisch: Star Formation in the Orion Nebula I: Stellar Content. In: Bo Reipurth (Hrsg.): Handbook of Star Forming Regions. 2008, arxiv:0812.1323v1, bibcode:2008hsf1.book..483M. Siehe S. 8–16 im arxiv-Dokument.
  73. Patrick Moore: The Amateur Astronomer. Springer, London 2006, ISBN 978-1-84628-286-7 (s. S. 224, eingeschränkte Vorschau bei Google Books).
  74. a b c d e f g h Ronald Stoyan, Stefan Binnewies, Susanne Friedrich: Atlas der Messier-Objekte. 2006, ISBN 978-3-938469-07-1, S. 177–180.
  75. R. Jon McGee, F. Kent Reilly III: Ancient Maya Astronomy and Cosmology in Lacandon Life. In: Journal of Latin American Lore. 1997, S. 125–142.
  76. Matthew G. Looper: Creation Mythology at Naranjo. In: Texas Notes on Precolumbian Art, Writing, and Culture. 1992.
  77. Vergleiche Nebulae in fiction, Orion Nebula der englischsprachigen Wikipedia
  78. Angebot einiger Artikel und eines Musikstücks (Memento vom 4. Februar 2017 im Internet Archive)
Dieser Artikel wurde am 11. Februar 2017 in dieser Version in die Liste der exzellenten Artikel aufgenommen.