Pauli-Matrizen

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Pauli-Matrizen (nach Wolfgang Pauli) sind spezielle komplexe hermitesche 2×2-Matrizen. Zusammen mit der 2×2-Einheitsmatrix, die in diesem Zusammenhang mit bezeichnet wird, bilden sie sowohl eine Basis des 4-dimensionalen reellen Vektorraums aller komplexen hermiteschen 2×2-Matrizen als auch eine Basis des 4-dimensionalen komplexen Vektorraums aller komplexen 2×2-Matrizen.

Sie wurden von Wolfgang Pauli 1927 zur Beschreibung des Spins eingeführt[1], waren in der Mathematik aber auch schon vorher bekannt.

Definition[Bearbeiten | Quelltext bearbeiten]

Die Pauli-Matrizen lauten ursprünglich:

Hierbei bezeichnet die imaginäre Einheit. Die Matrizen wurden ursprünglich in der Quantenmechanik eingeführt, um die grundlegenden Kommutationsregeln der Komponenten des Spin-Operators zu erfüllen (siehe unten). Häufig wird, besonders in der relativistischen Quantenmechanik, noch die Einheitsmatrix als nullte Paulimatrix dazugenommen:

Multiplikation[Bearbeiten | Quelltext bearbeiten]

Für die Multiplikation einer Pauli-Matrix mit einer anderen Pauli-Matrix ergibt sich aus den Rechenregeln der Matrixmultiplikation folgende Übersicht:

Das Produkt findet sich in der mit gekennzeichneten Zeile und der mit gekennzeichneten Spalte, zum Beispiel .

Damit ist klar, dass die Menge mit der Matrixmultiplikation als Verknüpfung eine Gruppe mit 16 Elementen bildet.

Dekomposition von Matrizen[Bearbeiten | Quelltext bearbeiten]

Gegeben sei eine komplexe 2×2-Matrix mit den Elementen . Dann lassen sich komplexe Zahlen finden, für die gilt:

     

Es gelten die Umrechnungen:

bzw.:

Eine komplexe 2×2-Matrix kann also als Linearkombination der geschrieben werden, und diese Darstellung ist eindeutig. M. a. W.: die Pauli-Matrizen bilden eine Basis des -Vektorraums (und Matrizenrings) , und diese Basis ist eine orthogonale unter dem Frobenius-Skalarprodukt, welch letzteres zu einem Hilbertraum macht.

Die Umrechnungen definieren einen Ringisomorphismus

mit der üblichen Vektoraddition, der üblichen -Skalarmultiplikation und der Vektor-Multiplikation

     

in Zwei Vektoren sind genau dann miteinander vertauschbar, wenn

wenn also die Vektorteile und -linear voneinander abhängen.

Die inverse Matrix von berechnet sich im Fall von hieraus zu

Hermitesche 2×2-Matrizen[Bearbeiten | Quelltext bearbeiten]

Die Teilmenge der hermiteschen 2×2-Matrizen, also der Matrizen mit

ist ein -Untervektorraum, für den die Pauli-Matrizen ebenfalls eine Basis bilden, die Koeffizienten sind aber reell. Anders gesagt: es gibt bei hermiteschen 2×2-Matrizen vier (reelle) freie Parameter, da und reell sind und .

Das Produkt zweier hermitescher Matrizen ist hermitesch, wenn sie kommutieren. Der Untervektorraum ist also kein (Unter)ring.

Isomorphie zu den Quaternionen[Bearbeiten | Quelltext bearbeiten]

(Unter)ring ist aber ein anderer Untervektorraum von , der sich durch Koeffizienten von aufspannen lässt. Er ist ebenfalls mit der -Skalarmultiplikation verträglich und zusätzlich hinsichtlich der Multiplikation abgeschlossen. Dieser -Untervektorraum ist isomorph zu den Quaternionen .

Als Basis für reelle Koeffizienten kann man die mit der imaginären Einheit multiplizierten Pauli-Matrizen zusammen mit der Einheitsmatrix nehmen, also die Menge , mit der isomorphen Zuordnung:

mit als den bekannten Einheitsquaternionen. Vor diese Zuordnung lässt sich jeder der 24 Automorphismen der Quaternionengruppe Q8 schalten. So kann auch ein Isomorphismus „in umgekehrter Ordnung“ gebaut werden:[2]

Anwendung[Bearbeiten | Quelltext bearbeiten]

In der Quantenphysik, in der Observablen hermitesche Operatoren bzw. Matrizen entsprechen, wird der Drehimpulsoperator von Spin-½-Zuständen, beispielsweise bei Elektronen, durch die Paulimatrizen dargestellt:

,

wobei „wird dargestellt durch“ bedeutet.

In der relativistischen Quantenmechanik, wo man entsprechend dem relativistischen Vierervektor Formalismus vier Raum-Zeit bzw. Energie-Impuls Variablen hat, tritt die Einheitsmatrix gleichberechtigt zu den drei Pauli-Matrizen (als „nullte“ Pauli-Matrix) und es wird mit ihrer Hilfe die Dirac-Gleichung mit den Dirac-Matrizen aufgebaut.

Direkt tauchen die Pauli-Matrizen in der Pauli-Gleichung zur quantenmechanischen Beschreibung von Teilchen mit Spin im Magnetfeld auf, die sich aus der nichtrelativistischen Reduktion der Diracgleichung ergibt, und in der Beschreibung von Majorana-Fermionen (Majorana-Gleichung).

Darstellung[Bearbeiten | Quelltext bearbeiten]

Die Pauli-Matrizen können neben der Darstellung als Matrizen mit Hilfe der Dirac-Notation dargestellt werden: Dabei können für die Linearkombination entweder die Standard-Basisvektoren oder die Eigenvektoren der Pauli-Matrizen verwendet werden.

Pauli-Matrix Matrix Linearkombination (Standard-Basisvektoren) Linearkombination (Eigenvektoren)

Die verwendeten Vektoren sind wie folgt definiert, wobei die verwendeten Kets durch Vektoren des dargestellt werden, was durch „“ gekennzeichnet ist:

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Die Pauli-Matrizen sind hermitesch und unitär. Daraus folgt mit dem durch definierten vierten Basiselement

Die Determinanten und Spuren der Pauli-Matrizen sind

Aus Obigem folgt, dass jede Pauli-Matrix die Eigenwerte +1 und -1 besitzt.

Des Weiteren:

Die Pauli-Matrizen erfüllen die algebraische Relation

( ist das Levi-Civita-Symbol), also insbesondere bis auf einen Faktor 2 dieselben Relationen wie die Drehimpulsalgebra

und die Clifford- oder Dirac-Algebra

Die Pauli-Matrizen gehören zum Spezialfall von Drehimpulsoperatoren, die auf Basisvektoren eines Drehimpuls--Multipletts mit Quantenzahlen in Maßsystemen mit folgendermaßen wirken:

Dabei ist eine natürliche Zahl und für treten die verschiedenen Quantenzahlen auf. Für wirken die Drehimpulsoperatoren auf die Komponenten von Linearkombinationen der beiden Basisvektoren und demnach durch Multiplikation mit den folgenden Matrizen

Mit und ergibt sich dann, dass die Drehimpulsoperatoren auf die Komponenten von Spin-1/2-Zuständen durch Multiplikation mit den halben Pauli-Matrizen wirken.

Zugeordnete Drehgruppe, Zusammenhang mit Spin-1/2-Systemen[Bearbeiten | Quelltext bearbeiten]

Die lineare Hülle der mit multiplizierten[3] Pauli-Matrizen ist mit der üblichen Matrizenmultiplikation eine Lie-Algebra. Aufgrund der mit für jeden Einheitsvektor geltenden Identität[4]

sind diese drei Matrizen die Generatoren der komplexen Drehgruppe SU(2).

Der Faktor 1/2 in der obigen Gleichung ist zwar mathematisch verzichtbar. Die Gleichung wird jedoch in der physikalischen Anwendung häufig in genau dieser Form benötigt. Denn (wie in der Einleitung erwähnt) stellen in der Quantenphysik die Matrizen die Operatoren für die Spinkomponenten eines Spin-1/2-Systems (beispielsweise eines Elektrons) dar. Andererseits beschreibt die durch den Exponentialausdruck gegebene Matrix die Veränderung des Spinzustands bei einer räumlichen Drehung. ist dabei der Drehwinkel, die Drehachse. Für ergibt sich ; d. h. der Zustandsvektor eines Spin-1/2-Systems wird durch Drehung um den Winkel in sein Negatives und erst durch Drehung um den Winkel wieder in sich selbst übergeführt („Spinordrehungen“).

Eigenvektoren[Bearbeiten | Quelltext bearbeiten]

Die Matrix hat die Eigenvektoren

wie man leicht erkennen kann:

entsprechend den Eigenwerten . Die Eigenvektoren von sind

und die Eigenvektoren von

Kronecker-Produkt von Pauli-Matrizen[Bearbeiten | Quelltext bearbeiten]

In der Mathematik können mit Hilfe des Tensorprodukts (Kronecker-Produkts) von Pauli-Matrizen (mit Einheitsmatrix) die Darstellungen der höheren Clifford-Algebren über den reellen Zahlen aufgebaut werden.

Pauli-Matrizen können zur Darstellung von Hamilton-Operatoren und zur Näherung der Exponentialfunktion solcher Operatoren verwendet werden. Sind die vier Pauli-Matrizen, so kann man mit Hilfe des Kronecker-Produkt höherdimensionale Matrizen erzeugen.


Eigenschaften der Pauli-Matrizen vererben sich auf diese Matrizen. Sind und zwei Kronecker Produkte von Pauli-Matrizen, so gilt:

  • sind Matrizen
  • (Die Einheitsmatrix)
  • oder (Kommutativität)
  • Die Kronecker-Produkte von Pauli-Matrizen sind linear unabhängig und bilden eine Basis im Vektorraum der -Matrizen. Hamilton-Operatoren vieler physikalischer Modelle lassen sich aufgrund der Basiseigenschaft als Summe solcher Matrizen ausdrücken (Linearkombination). Insbesondere lassen sich Erzeuger und Vernichter von Fermionen, die endlich viele Zustände einnehmen können, einfach durch sie ausdrücken.
mit ist Kronecker-Produkt von Pauli-Matrizen.

Beispiele für derartige Modelle sind Hubbard-Modell, Heisenberg-Modell (Quantenmechanik) und Anderson-Modell.

Das Kronecker-Produkt von Pauli-Matrizen tritt bei der Beschreibung von Spin-1/2-Systemen auf, die aus mehreren Teilsystemen aufgebaut sind. Der Zusammenhang ist dadurch gegeben, dass das Tensorprodukt zweier Operatoren in der zugehörigen Matrixdarstellung gerade durch das Kronecker-Produkt der Matrizen gegeben ist (siehe Kronecker-Produkt#Zusammenhang mit Tensorprodukten).

Näherung der Exponentialfunktion des Hamilton-Operators[Bearbeiten | Quelltext bearbeiten]

Häufig interessiert man sich für die Exponentialfunktion des Hamilton-Operators.

Aufgrund der Kommutativität kann man in einem Produkt die Matrizen beliebig anordnen. Ist eine Permutation, so ist:


Deshalb existieren rationale Zahlen mit:

Diese rationalen Zahlen sind, von Ausnahmen abgesehen, schwer zu berechnen.

Eine erste Näherung ergibt sich, indem man nur Summanden berücksichtigt, die aus kommutierenden Matrizen bestehen.

falls ein Paar mit und existiert
sonst

Die Näherung lässt sich weiter verbessern, indem man Paare, Tripel, … von nicht kommutierenden Matrizen berücksichtigt.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Willi-Hans Steeb: Kronecker Product of Matrices and Applications. B.I. Wissenschaftsverlag, Mannheim 1991, ISBN 3-411-14811-X.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise und Kommentare[Bearbeiten | Quelltext bearbeiten]

  1. Wolfgang Pauli „Zur Quantenmechanik des magnetischen Elektrons“, Zeitschrift für Physik, Bd.43, 1927, S. 601
  2. Mikio Nakahara: Geometry, topology, and physics, CRC Press, 2003, Seiten xxii ff (Google Books).
  3. Durch die Multiplikation mit entstehen aus hermiteschen Matrizen schiefhermitesche Matrizen. Eine Darstellung mit Hilfe von Hermiteschen Operatoren und Matrizen wird von Physikern bevorzugt, weil in der Quantenmechanik messbare Größen (sog. Observablen) stets durch Hermitesche Operatoren beschrieben werden.
  4. Charles Misner, Kip S. Thorne, John. A. Wheeler: Gravitation. S. 1142, W. H. Freeman, San Francisco 1973, ISBN 0-7167-0344-0