Pellsche Gleichung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Pellsche Gleichung für d = 2 und sechs ganzzahlige Lösungen

Als Pellsche Gleichung (nach John Pell, 1611–1685) bezeichnet man eine diophantische Gleichung der Form

mit positiv ganzzahligem .

Ist eine Quadratzahl, so besitzt die Gleichung offenbar nur die trivialen Lösungen . Andernfalls gibt es unendlich viele Lösungen, die man mit Hilfe der Kettenbruchentwicklung von bestimmen kann. Die verwandten Gleichungen und werden oft ebenfalls Pellsche Gleichungen genannt.

Die Gleichung wird John Pell fälschlicherweise zugeschrieben. Korrekter wäre die Bezeichnung Fermatsche Gleichung.[1][2]

Die Gleichung war schon Brahmagupta und Bhaskara II. bekannt. Die Lösung dieser Gleichung war als Problem von Pierre de Fermat in einem Brief an Bernard Frénicle de Bessy gestellt worden und 1657 als Problem veröffentlicht. Pell befasste sich nie mit der Lösung der Gleichung. Brouncker fand einige Lösungen (veröffentlicht im Commercium epistolicum of John Wallis 1658). Leonhard Euler stieß auf die Lösung von Brouncker in der lateinischen Ausgabe des Treatise of Algebra von John Wallis und benannte die Gleichung fälschlich nach Pell.[3][4] Euler veröffentlichte zuerst 1732 über die Pell-Gleichung und fand später die Verbindung mit Kettenbrüchen (veröffentlicht 1765), die im Grunde schon hinter der Lösung von Brouncker steckt. Joseph-Louis Lagrange befasste sich nach Euler ausführlich mit der Gleichung und gab als Erster einen Beweis, dass es für jedes eine Lösung gibt, wobei Fermat möglicherweise auch einen Beweis hatte.[5]

Algebraische Zahlentheorie[Bearbeiten | Quelltext bearbeiten]

Das Auffinden aller Lösungen ist für spezielle äquivalent dazu, die Einheiten des Ganzheitsrings des reellquadratischen Zahlkörpers zu finden. Nach dem Dirichletschen Einheitensatz hat die Einheitengruppe den Rang 1, d. h., es gibt eine Fundamentaleinheit (oder auch Grundeinheit) mit der sich alle Lösungen als darstellen lassen.

Beispielsweise ist für die Einheit eine Fundamentaleinheit und man kann die anderen Lösungen , , ... aus ihr erzeugen.

Lösungsmöglichkeiten[Bearbeiten | Quelltext bearbeiten]

Lösung mit Hilfe der Kettenbruchentwicklung[Bearbeiten | Quelltext bearbeiten]

Die Kettenbruchentwicklung einer quadratisch irrationalen Zahl ist unendlich und periodisch. hat die Kettenbruchentwicklung (siehe Kettenbruch#Periodische Kettenbrüche). Sei mit ganzzahligen , dann ist die kleinste Lösung der verallgemeinerten Pellschen Gleichung . Die anderen Lösungen lassen sich wie erwähnt daraus konstruieren.[6] Auch alle weiteren mit lösen .

Zum Beispiel hat die Kettenbruchentwicklung

Bricht man die Entwicklung jeweils an der Stelle ab, so erhält man beginnend mit

und findet an den Stellen und die Lösungen

0von
0und
0von
.

Weiter stellt man fest, dass für jedes Element der abgebrochenen Kettenbruchentwicklung der Länge eine Lösung einer Pellschen Gleichung mit rechter Seite ist, die Näherungsbrüche "dazwischen" lösen die Gleichung mit und .

Generieren weiterer Lösungen auf Basis einer bekannten[Bearbeiten | Quelltext bearbeiten]

Ist eine Lösung bekannt, so lassen sich weitere Lösungen auch mit einer Matrizenmultiplikation bestimmen. Es gilt

Beispiel

Die Pellsche Gleichung für hat die Minimallösung . Die nächsten Lösungen ergeben sich dann zu

usw.

Tabelle der Fundamentaleinheiten für die Pellsche Gleichung[Bearbeiten | Quelltext bearbeiten]

Hier eine Tabelle der kleinsten Lösungen (Fundamentaleinheiten) von mit d ≤ 128. Ist d ein Quadrat gibt es nur die die trivialen Lösungen . Die Werte von x und y bilden die Folgen A002350[7] und A002349[8] in OEIS.

d x y
1
2 3 2
3 2 1
4
5 9 4
6 5 2
7 8 3
8 3 1
9
10 19 6
11 10 3
12 7 2
13 649 180
14 15 4
15 4 1
16
17 33 8
18 17 4
19 170 39
20 9 2
21 55 12
22 197 42
23 24 5
24 5 1
25
26 51 10
27 26 5
28 127 24
29 9801 1820
30 11 2
31 1520 273
32 17 3
d x y
33 23 4
34 35 6
35 6 1
36
37 73 12
38 37 6
39 25 4
40 19 3
41 2049 320
42 13 2
43 3482 531
44 199 30
45 161 24
46 24335 3588
47 48 7
48 7 1
49
50 99 14
51 50 7
52 649 90
53 66249 9100
54 485 66
55 89 12
56 15 2
57 151 20
58 19603 2574
59 530 69
60 31 4
61 1766319049 226153980
62 63 8
63 8 1
64
d x y
65 129 16
66 65 8
67 48842 5967
68 33 4
69 7775 936
70 251 30
71 3480 413
72 17 2
73 2281249 267000
74 3699 430
75 26 3
76 57799 6630
77 351 40
78 53 6
79 80 9
80 9 1
81
82 163 18
83 82 9
84 55 6
85 285769 30996
86 10405 1122
87 28 3
88 197 21
89 500001 53000
90 19 2
91 1574 165
92 1151 120
93 12151 1260
94 2143295 221064
95 39 4
96 49 5
d x y
97 62809633 6377352
98 99 10
99 10 1
100
101 201 20
102 101 10
103 227528 22419
104 51 5
105 41 4
106 32080051 3115890
107 962 93
108 1351 130
109 158070671986249 15140424455100
110 21 2
111 295 28
112 127 12
113 1204353 113296
114 1025 96
115 1126 105
116 9801 910
117 649 60
118 306917 28254
119 120 11
120 11 1
121
122 243 22
123 122 11
124 4620799 414960
125 930249 83204
126 449 40
127 4730624 419775
128 577 51

Das Rinderproblem des Archimedes[Bearbeiten | Quelltext bearbeiten]

Bei der Lösung des Rinderproblems des Archimedes stößt man (wenn man geschickt rechnet)[1] auf die Pellsche Gleichung zum Parameter , die als Minimallösung

hat. Für das Rinderproblem braucht man allerdings nicht die Minimallösung, sondern eine (genauer: die kleinste) Lösung, bei der ein Vielfaches von ist.

Alternativ dazu kann man für die Pellsche Gleichung mit Parameter die Minimallösung (jetzt ohne Nebenbedingung) suchen, die von folgender Größenordnung ist (vgl. o. g. Quelle):

Nicht zufällig ist , wodurch numerisch der Zusammenhang zwischen den Minimallösungen der beiden Pellschen Gleichungen hergestellt ist.

Für das Rinderproblem selbst ist als Zwischenergebnis die Zahl von Belang. Das Endergebnis ist das -Fache davon, also ca. .

Literatur[Bearbeiten | Quelltext bearbeiten]

  • H. W. Lenstra Jr.: Solving the Pell Equation, Notices of the American Mathematical Society, Band 49, Heft 2, 2002, S. 182–192, online (PDF; 237 kB).
  • M.J.Jacobson Jr.,H.C.Williams: Solving the Pell Equation,CMS Books in Mathematics, Springer 2009, ISBN 978-0-387-84922-5
  • Leonard Dickson: History of the theory of numbers, Washington D.C.: Carnegie Institution, 1920, Kapitel 12 (zur Geschichte der Pellschen Gleichung)

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b Siehe Artikel von H. W. Lenstra Jr.
  2. So auch Dickson, History of the theory of numbers, Band 2, S. 341 (Kapitel 12 zur Geschichte der Pellschen Gleichung)
  3. Noel Malcolm, Jacqueline Steadall: John Pell in his correspondence with Sir Charles Cavendish, Oxford UP, 2005, S. 320
  4. André Weil, Number theory - An approach through history from Hammurapi to to Legendre, Birkhäuser 1984, S. 174
  5. Dickson, History of the theory of numbers, Band 2, Carnegie Institution 1920, S. 353. Er benutzte seine Methode des unendlichen Abstiegs
  6. Max Lahn, Jonathan Spiegel: Continued Fractions and Pell’s Equation. In: Mixed Math - Explorations in math and number theory. David Lowry-Duda, Mai 2016, abgerufen am 31. Mai 2020 (englisch).
  7. A002350, auf oeis.org
  8. A002349, auf oeis.org