Pendel

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Pendel (Begriffsklärung) aufgeführt.

Ein Pendel, auch Schwerependel (früher auch Perpendikel,[1] von lat. pendere „hängen“) ist ein Körper, der, an einer Achse oder einem Punkt außerhalb seines Massenmittelpunktes drehbar gelagert, um seine eigene Ruheposition schwingen kann. Seine einfachste Ausführung ist das Fadenpendel, das aus einem an einem Faden aufgehängten Gewicht besteht und baulich einem Schnurlot gleicht.

Alternativ auch als Pendel wird in der Technik – insbesondere im Automobilbau – die sich im Allgemeinen nicht infolge ihrer Schwere bewegende Schwinge bezeichnet (zum Beispiel Teile der Pendelachse).

Eine Eigenschaft des Schwerependels ist, dass seine Schwingungsdauer nur von der Länge, nicht aber von der Art, Gestalt oder Masse des Pendelkörpers abhängt, bzw. von der Größe der Auslenkung, vorausgesetzt, diese bleibt auf wenige Grad beschränkt. Dies wurde erstmals von Galileo Galilei festgestellt und nach den vertiefenden Untersuchungen durch Christiaan Huygens zur Regulierung der ersten genauen Uhren verwendet.

Grundlagen[Bearbeiten | Quelltext bearbeiten]

Bewegung des Pendels

Das Pendel besteht meist aus einem Band oder einem Stab, das am freien Ende von einer Masse beschwert ist. Bringt man ein solches Pendel aus seiner vertikalen Ruhelage, schwingt es unter dem Einfluss der Schwerkraft zurück und wird, solange keine Dämpfung erfolgt, symmetrisch zwischen den Scheitelpunkten als Umkehrpunkt der Bewegung um die tiefstmögliche Position des Massenmittelpunktes – die Ruheposition – weiterschwingen. Beim Schwingen wird die potentielle Energie der Masse in kinetische Energie und wieder zurückverwandelt. In der Ruheposition liegt die gesamte Energie der Schwingung als kinetische Energie vor, am Scheitelpunkt als potentielle Energie. Im zeitlichen Mittel ist die Energie gemäß dem Virialsatz zur gleichen Teilen in kinetische und potentielle Energie aufgeteilt.

Die Regelmäßigkeit der Schwingungsperiode eines Pendels wird bei mechanischen Pendeluhren genutzt. Ihre Pendel müssen, sollen sie genau gehen, möglichst kleine und konstante Amplituden zurücklegen.

Man unterscheidet mathematische Pendel von physikalischen Pendeln: Das ebene mathematische Pendel und das sphärische Pendel sind idealisierende Modelle zur allgemeinen Beschreibung von Pendelschwingungen. Dabei wird angenommen, dass die gesamte Masse des Pendels in einem Punkt vereinigt vorliegt, der einen festen Abstand vom Aufhängepunkt hat. Ein solches Pendel wird näherungsweise durch ein Fadenpendel realisiert. Das physikalische Pendel unterscheidet sich vom mathematischen Pendel, indem bei ihm die Form und Größe des Pendelkörpers berücksichtigt wird, weshalb das Verhalten physikalischer Pendel eher dem von realen Pendeln entspricht. So ist beispielsweise die Periodendauer eines Stangenpendels, bei dem ein Pendelkörper an einer Stange mit endlicher Masse hängt, stets kürzer als die Periodendauer eines gleich langen mathematischen Pendels, bei dem die Masse der Aufhängung vernachlässigt werden kann.[2] Für kleine Auslenkungen vereinfacht sich die Betrachtung der Bewegung des Pendels: Da hier die rückstellende Kraft näherungsweise proportional zur Auslenkung ist, handelt es sich um einen harmonischen Oszillator.

Mit dem Foucaultschen Pendel konnte die Erdrotation nachgewiesen werden: Die Corioliskraft wirkt von außen auf das Pendel, indem sie seine Schwingungsebene verändert und es von Schwingung zu Schwingung in einem wiederkehrenden Muster ablenkt.

Mathematisches Pendel[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Mathematisches Pendel
Schwingung eines Fadenpendels

Das mathematische Pendel oder ebene Pendel ist ein idealisiertes Fadenpendel. Hierbei kann eine als punktförmig gedachte Masse, die mittels einer masselosen Pendelstange an einem Punkt aufgehängt ist, in einer vertikalen Ebene hin und her schwingen, wobei Reibungseffekte, insbesondere der Luftwiderstand vernachlässigt werden. Das ebene Pendel ist ein Spezialfall des Kugelpendels, das sich auch in andere Raumrichtungen bewegen kann. Da die Bewegung des Pendelkörpers auf einem vertikalen Kreis erfolgt, wird es auch als Kreispendel[3] bezeichnet, obwohl damit häufiger das Kegelpendel gemeint ist.

In der Praxis kann man ein mathematisches Pendel dadurch annähern, dass man einen möglichst langen und dünnen Stab oder (falls die Auslenkung kleiner als 90° ist) einen dünnen Faden und einen möglichst kleinen und schweren Pendelkörper verwendet. Dass bei diesem Aufbau die Schwingungsweite (Amplitude) erst nach einer großen Anzahl Schwingungen spürbar zurückgeht, zeigt, dass hierbei die Reibung nur einen geringen Einfluss hat.

Pendel, welche die genannten Eigenschaften des mathematischen Pendels nicht nähererungsweise erfüllen, lassen sich durch das kompliziertere Modell des physikalischen Pendels beschreiben.

Harmonischer Oszillator[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Harmonischer Oszillator

Ein harmonischer Oszillator ist ein schwingungsfähiges System, das sich durch eine lineare Rückstellgröße auszeichnet. Für ein mechanisches System bedeutet dies, dass es eine Kraft gibt, die einer zunehmenden Auslenkung mit proportional anwachsender Stärke entgegenwirkt. Nach einem Anstoß von außen schwingt ein harmonischer Oszillator sinusförmig (=harmonisch) um seine Ruhelage, wobei die Schwingungsdauer unabhängig von der Größe der Auslenkung ist. Beispiele für harmonische Oszillatoren sind Federpendel, elektrische Schwingkreise und Stimmgabeln.

Der harmonische Oszillator ist ein wichtiges Modellsystem der Physik. Er ist durch nur zwei Parameter vollständig beschrieben, die Eigenfrequenz und die Dämpfung. Viele komplexere Systeme verhalten sich bei kleinen Auslenkungen näherungsweise wie harmonische Oszillatoren, z. B. das Fadenpendel. Der harmonische Oszillator in der Quantenmechanik ist eines der wenigen quantenmechanischen Systeme, das sich ohne Näherungen berechnen lässt.

Die Bezeichnung harmonischer Oszillator wird auch für gedämpfte harmonische Oszillatoren verwendet, auch wenn diese streng genommen keine harmonische Schwingung vollziehen.

Federpendel[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Federpendel und Torsionspendel
Video: Ein Torsionspendel

Federpendel sind keine Pendel im eigentlichen Sinne, denn sie verfügen im Unterschied zum Schwerkraftpendel über eigene Rückstellkräfte, die von der Schwerkraft unabhängig sind.

Es gibt u.a. folgende Varianten:

  • Beim sich linear bewegenden Federpendel oder Federschwinger entsteht die Rückstellkraft durch Dehnung einer Schraubenfeder.
  • Der horizontale Federschwinger pendelt waagerecht zwischen zwei gespannten Federn hin und her. Auch er erhält die Rückstellkraft durch Dehnung je einer der beiden Federn.
  • Das Torsionspendel (Drehpendel) schwingt in Form einer Drehbewegung mit senkrechter Achse an einem sich verdrehenden Draht oder Band; die rückstellende Kraft wird durch Torsion erzeugt.
  • Bei Drehschwingern mit Spiralfeder (z. B. Unruh) wird die rückstellende Kraft durch Biegung in der Spiralfeder aufgebracht

Gekoppelte Pendel[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Gekoppelte Pendel und Doppelpendel

Bei zwei gekoppelten Pendeln üben zwei Pendel eine von beiden Auslenkungen abhängige Kraft aufeinander aus. Zum Beispiel verbindet man zwei gleiche Fadenpendel durch eine Feder miteinander, um im Demonstrationsexperiment die Eigenschwingungen und das Phänomen der Schwebung zu beobachten. Gebundene Atome (z. B. in einem Molekül oder in einem Festkörper) können oft näherungsweise durch ein Modell von vielen gekoppelten Pendeln beschrieben werden. Mehr als zwei gekoppelte Pendel können komplexe Schwingungsmuster zeigen, wenn die Grundschwingung von anders geformten Eigenschwingungen (oder Schwingungsmoden) mit höheren Eigenfrequenzen überlagert wird.

Beim Doppelpendel wird an der Masse eines Pendels ein zweites Pendel angebracht. Es dient unter anderem der Demonstration von chaotischen Prozessen, da die Bewegung chaotisch sein kann.

Foucaultsches Pendel[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Foucaultsches Pendel

Ein foucaultsches (auch Foucault’sches) Pendel ist ein langes sphärisches Pendel mit einer großen Pendelmasse, mit dessen Hilfe ohne Bezug auf Beobachtungen am Himmel die Erdrotation anschaulich nachgewiesen werden kann.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

  • Nur etwa 1,5 cm kurze Pendel dienen in Automatikgurten von Autos dem Detektieren von starker Horizontalbeschleunigung binnen kurzem Weg und Auslösen der Arretierung (neben zwei Fliehkraft-Klinken an der Spule).
  • Kletterer an einem Sicherungsseil hängend können sich durch wiederholtes Abstoßen zum Pendeln bringen, um seitlich versetzt eine Position zum Weiterklettern zu erreichen. Andererseits birgt ein Sturz in ein nach oben schräg verlaufendes Seil die Gefahr des Auspendelns und Anschlagens am Fels.
  • Sensoren, die ein Rücken oder Kippen eines Gegenstandes detektieren, etwa um Diebstahl anzuzeigen, enthalten im einfachsten Fall ein Pendel mit einem elektrischen Schleifkontakt in Neutralposition.
  • Schlagpendel dienen der Bestimmung der Kerbschlagzähigkeit und anderer Festigkeitsgrößen von Materialien oder Werkstücken.
  • Die Abrissbirne soll insbesondere senkrechte Mauern und Beton durch waagrechten Stoß demolieren. Es gibt auch Rammböcke, die an 2 Pendelarmen hängen, deren obenliegende Griffe von 4 Personen geführt werden.
  • Eine an einem Tau pendelnd zur Schiffsbordwand schwingende Flasche soll bei einer Schiffstaufe zerschellen.
  • Die Schiffsschaukel im Vergnügungspark, ein starres Pendel mit Gondel, wird von den darin stehenden Personen mit Körperkraft und -schwung aufgeschaukelt.
  • Die Künstlerin Carolee Schneemann "zeichnet kinetisch" an einem Seil hängend.[4]
  • Tänzer an Sicherungsseilen mit selbst einhändig bedienbaren Abseilgeräten können an einer etwa vertikalen Wand durch Laufen und Abstoßen seitliches Pendeln auslösen, sich schrittweise ablassen und damit ein weithin sichtbares Ballett vollführen
  • Pendeln spielt eine Rolle bei der Akrobatik am Trapez und Vertikaltuch sowie beim Turnen an Ringen und Kletterseil.
  • Das Balancieren eines Stabs oder einer Leiter ist das Führen eines starren umgekehrten Pendels alleine durch Unterstützen an einem Punkt.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Pendulums – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Pendel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Fritz von Osterhausen: Callweys Uhrenlexikon. Callwey, München 1999, ISBN 3-7667-1353-1.
  2. Johannes Crueger: Schule der Physik, Erfurt 1870, S. 97 online
  3. Physik und Mathematik mit Maple, Kreispendel, abgerufen am 22. Dezember 2014
  4. http://salzburg.orf.at/news/stories/2750451/ Körper in Kunst verwandelt: Carolee Schneemann, orf.at, 2. Jänner 2016, abgerufen 2. Jänner 2016.