Pendel

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Ein Pendel, auch Schwerependel (früher auch Perpendikel,[1] von lat. pendere „hängen“) ist ein Körper, der, an einer Achse oder einem Punkt außerhalb seines Massenmittelpunktes drehbar gelagert, um seine eigene Ruheposition schwingen kann. Seine einfachste Ausführung ist das Fadenpendel, das aus einem an einem Faden aufgehängten Gewicht besteht und baulich einem Schnurlot gleicht. In diesem Sinne keine Pendel sind das Federpendel und das Torsionspendel.

Alternativ auch als Pendel wird in der Technik – insbesondere im Automobilbau – die sich im Allgemeinen nicht infolge ihrer Schwere bewegende Schwinge bezeichnet (zum Beispiel Teile der Pendelachse).

Eine Eigenschaft des Schwerependels ist, dass seine Schwingungsdauer nur von der Länge des Fadens (genauer: dem Abstand zwischen Aufhängung und Schwerpunkt des Pendelkörpers), nicht aber von der Art, Gestalt oder Masse des Pendelkörpers abhängt; auch fast nicht von der Größe der maximalen Auslenkung, vorausgesetzt, diese bleibt auf wenige Winkelgrad beschränkt. Dies wurde erstmals von Galileo Galilei festgestellt und nach den vertiefenden Untersuchungen durch Christiaan Huygens zur Regulierung der ersten genauen Uhren verwendet. Ein Sekundenpendel hat, je nach geografischer Breite des Standorts, eine Länge zwischen 99,1 und 99,6 cm.

Grundlagen[Bearbeiten | Quelltext bearbeiten]

Bewegung des Pendels

Das Pendel besteht meist aus einem Band oder einem Stab, der am freien Ende mit einer Masse beschwert ist. Bringt man ein solches Pendel aus seiner vertikalen Ruhelage, schwingt es unter dem Einfluss der Schwerkraft zurück und wird, solange keine Dämpfung erfolgt, symmetrisch zwischen den Scheitelpunkten als Umkehrpunkt der Bewegung um die tiefstmögliche Position des Massenmittelpunktes – die Ruheposition – weiterschwingen. Beim Schwingen wird die potentielle Energie der Masse in kinetische Energie und wieder zurück verwandelt. In der Ruheposition liegt die gesamte Energie der Schwingung als kinetische Energie vor, am Scheitelpunkt als potentielle Energie. Im zeitlichen Mittel ist die Energie gemäß dem Virialsatz zu gleichen Teilen in kinetische und potentielle Energie aufgeteilt.

Die Regelmäßigkeit der Schwingungsperiode eines Pendels wird bei mechanischen Pendeluhren genutzt. Ihre Pendel müssen, sollen sie genau gehen, möglichst kleine und konstante Amplituden zurücklegen.

Man unterscheidet mathematische Pendel von physikalischen Pendeln: Das ebene mathematische Pendel und das sphärische Pendel sind idealisierende Modelle zur allgemeinen Beschreibung von Pendelschwingungen. Dabei wird angenommen, dass die gesamte Masse des Pendels in einem Punkt vereinigt vorliegt, der einen festen Abstand vom Aufhängepunkt hat. Ein solches Pendel wird näherungsweise durch ein Fadenpendel realisiert. Das physikalische Pendel unterscheidet sich vom mathematischen Pendel, indem bei ihm die Form und Größe des Pendelkörpers berücksichtigt wird, weshalb das Verhalten physikalischer Pendel eher dem von realen Pendeln entspricht. So ist beispielsweise die Periodendauer eines Stangenpendels, bei dem ein Pendelkörper an einer Stange mit endlicher Masse hängt, stets kürzer als die Periodendauer eines gleich langen mathematischen Pendels, bei dem die Masse der Aufhängung vernachlässigt werden kann.[2] Für kleine Auslenkungen vereinfacht sich die Betrachtung der Bewegung des Pendels: Da hier die rückstellende Kraft näherungsweise proportional zur Auslenkung ist, handelt es sich um einen harmonischen Oszillator.

Mit dem Foucaultschen Pendel konnte die Erdrotation nachgewiesen werden: Die Corioliskraft wirkt von außen auf das Pendel, indem sie seine Schwingungsebene verändert und es von Schwingung zu Schwingung in einem wiederkehrenden Muster ablenkt.

Hintergrund[Bearbeiten | Quelltext bearbeiten]

Theorie: Harmonischer Oszillator[Bearbeiten | Quelltext bearbeiten]

Das Pendel ist eine mechanische Realisierung eines harmonischen Oszillators. Der harmonische Oszillator ist ein bedeutendes Modellsystem in der Physik, da es ein geschlossen lösbares System darstellt. Es ist dadurch charakterisiert, dass eine Kraft proportional zur Auslenkung entgegen der Auslenkungsrichtung wirkt. Mit der Auslenkung , der zweiten Ableitung nach der Zeit und einer Proportionalitätskonstanten gilt also:

Mit dieser Proportionalitätskonstanten besitzt der harmonische Oszillator einen Freiheitsgrad, der seine Kreisfrequenz genannt wird. Die Lösung dieser Gleichung ist periodischer Natur, die abhängig von den physikalischen Anfangsbedingungen als Summe einer Sinus- und Kosinusfunktion geschrieben werden kann:

Die Bewegung, die ein harmonischer Oszillator beschreibt, heißt harmonische Schwingung. Nicht der strengen Definition des harmonischen Oszillators folgend, werden teilweise auch gedämpfte harmonische Osziallatoren als solche bezeichnet. Diese sind derart modelliert, dass die Amplitude, die maximale Auslenkung, der Schwingung mit der Zeit kleiner wird.

Mathematisches und Physikalisches Pendel[Bearbeiten | Quelltext bearbeiten]

Schwingung eines Fadenpendels

Das mathematische Pendel ist das einfachste Modell eines Pendels: Eine Massepunkt ist an einem masselosen, starren Faden aufgehängt und kann sich entsprechend nur in zwei Dimensionen auf einer Kreisbahn um die Aufhängung bewegen. Sein einziger Freiheitsgrad ist die Auslenkung um eine Gleichgewichtslage oder Ruheposition und die Gewichtskraft wirkt als rückstellende Kraft auf den Massepunkt. Bei hinreichend kleiner Auslenkung kann das mathematische Pendel als harmonischer Oszillator beschrieben werden. Die Kreisfrequenz hängt dabei nur von der Fadenlänge und der Erdbeschleunigung ab:

Die Verallgemeinerung des mathematischen Pendels in drei Dimensionen heißt sphärisches Pendel. Dessen gekoppeltes Gleichungssystem besitzt keine einfache Lösung mehr.

Das physikalische Pendel berücksichtigt im Gegensatz zum mathematischen Pendel die Ausdehnung des Pendelkörpers und die Masse des Fadens. Die Kreisfrequenz des physikalischen Pendels hängt entsprechend auch von seiner Masse und seinem Trägheitsmoment ab, während als Abstand des Schwerpunkts von der Aufhängung präzisiert werden muss:

Gekoppelte Pendel[Bearbeiten | Quelltext bearbeiten]

Bei zwei gekoppelten Pendeln üben zwei Pendel eine von beiden Auslenkungen abhängige Kraft aufeinander aus. Zum Beispiel verbindet man zwei gleiche Fadenpendel durch eine Feder miteinander, um im Demonstrationsexperiment die Eigenschwingungen und das Phänomen der Schwebung zu beobachten. Gebundene Atome (z. B. in einem Molekül oder in einem Festkörper) können oft näherungsweise durch ein Modell von vielen gekoppelten Pendeln beschrieben werden. Mehr als zwei gekoppelte Pendel können komplexe Schwingungsmuster zeigen, wenn die Grundschwingung von anders geformten Eigenschwingungen (oder Schwingungsmoden) mit höheren Eigenfrequenzen überlagert wird.

Beim Doppelpendel wird an der Masse eines Pendels ein zweites Pendel angebracht. Es dient unter anderem der Demonstration von chaotischen Prozessen, da die Bewegung chaotisch sein kann.

Federpendel[Bearbeiten | Quelltext bearbeiten]

Video: Ein Torsionspendel

Federpendel sind keine Pendel im eigentlichen Sinne, denn sie verfügen im Unterschied zum Schwerkraftpendel über eigene Rückstellkräfte, die von der Schwerkraft unabhängig sind.

Es gibt u. a. folgende Varianten:

  • Beim sich linear bewegenden Federpendel oder Federschwinger entsteht die Rückstellkraft durch Dehnung einer Schraubenfeder.
  • Der horizontale Federschwinger pendelt waagerecht zwischen zwei gespannten Federn hin und her. Auch er erhält die Rückstellkraft durch Dehnung je einer der beiden Federn.
  • Das Torsionspendel (Drehpendel) schwingt in Form einer Drehbewegung mit senkrechter Achse an einem sich verdrehenden Draht oder Band. Die rückstellende Kraft wird durch Torsion erzeugt.
  • Bei Drehschwingern mit Spiralfeder (z. B. Unruh) wird die rückstellende Kraft durch Biegung in der Spiralfeder aufgebracht.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

  • Mithilfe des Foucaultschen Pendels kann die Erdrotation sichtbar gemacht werden.
  • Nur etwa 1,5 cm kurze Pendel dienen in Automatikgurten von Autos dem Detektieren von starker Horizontalbeschleunigung binnen kurzem Weg und Auslösen der Arretierung (neben zwei Fliehkraft-Klinken an der Spule).
  • Kletterer an einem Sicherungsseil hängend können sich durch wiederholtes Abstoßen zum Pendeln bringen, um seitlich versetzt eine Position zum Weiterklettern zu erreichen. Andererseits birgt ein Sturz in ein nach oben schräg verlaufendes Seil die Gefahr des Auspendelns und Anschlagens am Fels.
  • Sensoren, die ein Rücken oder Kippen eines Gegenstandes detektieren, etwa um Diebstahl anzuzeigen, enthalten im einfachsten Fall ein Pendel mit einem elektrischen Schleifkontakt in Neutralposition.
  • Schlagpendel dienen der Bestimmung der Kerbschlagzähigkeit und anderer Festigkeitsgrößen von Materialien oder Werkstücken.
  • Die Abrissbirne soll insbesondere senkrechte Mauern und Beton durch waagrechten Stoß demolieren. Es gibt auch Rammböcke, die an 2 Pendelarmen hängen, deren obenliegende Griffe von 4 Personen geführt werden.
  • Eine an einem Tau pendelnd zur Schiffsbordwand schwingende Flasche soll bei einer Schiffstaufe zerschellen.
  • Die Schiffsschaukel im Vergnügungspark, ein starres Pendel mit Gondel, wird von den darin stehenden Personen mit Körperkraft und -schwung aufgeschaukelt.
  • Die Künstlerin Carolee Schneemann „zeichnet kinetisch“ an einem Seil hängend.[3]
  • Tänzer an Sicherungsseilen mit selbst einhändig bedienbaren Abseilgeräten können an einer etwa vertikalen Wand durch Laufen und Abstoßen seitliches Pendeln auslösen, sich schrittweise ablassen und damit ein weithin sichtbares Ballett vollführen.
  • Pendeln spielt eine Rolle bei der Akrobatik am Trapez und Vertikaltuch sowie beim Turnen an Ringen und am Kletterseil.
  • Das Balancieren eines Stabs oder einer Leiter ist das Führen eines starren umgekehrten Pendels alleine durch Unterstützen an einem Punkt.
  • Das Riefler-Pendel steigerte die Ganggenauigkeit von Pendeluhren auf besser als eine Zehntelsekunde pro Tag.
  • Die Pendelfigur ist ein Spielzeug.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Pendulums – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Pendel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Fritz von Osterhausen: Callweys Uhrenlexikon. Callwey, München 1999, ISBN 3-7667-1353-1.
  2. Johannes Crueger: Schule der Physik. Erfurt 1870, S. 97, online.
  3. Körper in Kunst verwandelt: Carolee Schneemann. Bei: ORF.at. 2. Jänner 2016, abgerufen am 2. Jänner 2016.