Primzerlegung (Topologie)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt die Primzerlegung von Mannigfaltigkeiten. Für die Primzerlegung von Knoten siehe Zusammengesetzter Knoten.

In der Topologie, einem Teilgebiet der Mathematik, bezeichnet Primzerlegung eine Zerlegung von Mannigfaltigkeiten in "Primkomponenten".

Prim-Mannigfaltigkeiten[Bearbeiten | Quelltext bearbeiten]

Eine geschlossene zusammenhängende -dimensionale Mannigfaltigkeiten ist eine Prim-Mannigfaltigkeit, wenn sie sich nicht als zusammenhängende Summe zerlegen lässt, also wenn aus

folgt, dass oder homöomorph zur Sphäre ist.

Prim-Zerlegung[Bearbeiten | Quelltext bearbeiten]

Als Prim-Zerlegung einer geschlossenen zusammenhängenden -dimensionalen Mannigfaltigkeit wird eine Zerlegung als zusammenhängende Summe von endlich vielen Prim-Mannigfaltigkeiten bezeichnet, also

mit Prim-Mannigfaltigkeiten (den Primkomponenten).

Existenz[Bearbeiten | Quelltext bearbeiten]

Aus der Poincaré-Vermutung folgt, dass jede geschlossene zusammenhängende 3-Mannigfaltigkeit eine Primzerlegung besitzt. Tatsächlich lässt sich nach dem Satz von Grushko-Neumann jede endlich erzeugte Gruppe als freies Produkt unzerlegbarer Gruppen zerlegen. Weil (in Dimensionen ) die Fundamentalgruppe der zusammenhängenden Summe das freie Produkt der Fundamentalgruppen der einzelnen Summanden ist, kann man dann jede 3-Mannigfaltikgeit als zusammenhängende Summe endlich vieler Mannigfaltigkeiten nichttrivialer Fundamentalgruppe mit (a priori) weiteren einfach zusammenhängenden Mannigfaltigkeiten zerlegen, letztere müssen aber nach der Poincaré-Vermutung homöomorph zur Sphäre sein.

Im Fall 3-dimensionaler Mannigfaltigkeiten war die Existenz einer Prim-Zerlegung bereits 1924, also lange vor dem Beweis der Poincaré-Vermutung, von Kneser bewiesen worden. Seine Methoden wurden später von Haken zum Beweis der Endlichkeit von Hierarchien inkompressibler Flächen in Haken-Mannigfaltigkeiten verallgemeinert.

Kneser bewies, dass sich jede Zerlegung der Fundamentalgruppe einer geschlossenen 3-Mannigfaltigkeit als freies Produkt durch eine zusammenhängende Summe mit realisieren lässt. Das analoge Problem in höheren Dimensionen war als Kneser-Vermutung bekannt, es gibt aber in allen Dimensionen Gegenbeispiele zu dieser Vermutung.[1][2]

Die Prim-Zerlegung spielt eine wichtige Rolle in der Geometrisierung von 3-Mannigfaltigkeiten.

Eindeutigkeit[Bearbeiten | Quelltext bearbeiten]

Die Prim-Zerlegung geschlossener, orientierbarer 3-Mannigfaltigkeiten ist eindeutig (bis auf Umordnen und Homöomorphismen), das wurde 1962 von Milnor bewiesen.

In höheren Dimensionen gilt die Eindeutigkeit nicht, zum Beispiel ist

.

Auch für nicht-orientierbare Mannigfaltigkeiten gilt die Eindeutigkeit der Primzerlegung nicht, Gegenbeispiele gibt es bereits in Dimension 2.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Hellmuth Kneser: Ein topologischer Zerlegungssatz. Proc. Konink. Nederl. Akad. Wetensch. 27 (1924), 601—616.
  • John Milnor: A unique decomposition theorem for 3-manifolds. Amer. J. Math. 84 1962 1–7.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Kreck, Matthias; Lück, Wolfgang; Teichner, Peter: Counterexamples to the Kneser conjecture in dimension four. Comment. Math. Helv. 70 (1995), no. 3, 423–433.pdf
  2. Cappell, Sylvain E.: On connected sums of manifolds. Topology 13 (1974), 395–400.