Dies ist ein als lesenswert ausgezeichneter Artikel.

Produktregel

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Produktregel oder Leibnizregel (nach G. W. Leibniz) ist eine grundlegende Regel der Differentialrechnung. Sie führt die Berechnung der Ableitung eines Produktes von Funktionen auf die Berechnung der Ableitungen der einzelnen Funktionen zurück.

Eine Anwendung der Produktregel in der Integralrechnung ist die Methode der partiellen Integration. Für den Fall, dass eine der beiden Funktionen konstant ist, geht die Produktregel in die einfachere Faktorregel über.

Aussage der Produktregel[Bearbeiten | Quelltext bearbeiten]

Sind die Funktionen und von einem Intervall in die Menge der reellen oder der komplexen Zahlen an einer Stelle differenzierbar, so ist auch die durch

für alle

definierte Funktion an der Stelle differenzierbar, und es gilt

oder kurz:

Anwendungsbeispiele[Bearbeiten | Quelltext bearbeiten]

Im Folgenden sei stets

  • Ist und so erhält man aus der Kenntnis von und mit der Produktregel die Aussage
  • Ist und so ist also ist
und durch Umformen erhält man die Aussage

Verwendet man die Kurznotation so erhält man beispielsweise für die Ableitung folgender Funktion


Ausmultipliziert ergibt sich

Erklärung und Beweis[Bearbeiten | Quelltext bearbeiten]

Geometrische Veranschaulichung des Beweises der Produktregel

Das Produkt zweier reeller (an einer Stelle differenzierbarer) Funktionen und hat an der Stelle den Wert der als Flächeninhalt eines Rechtecks mit den Seiten und gedeutet werden kann. Ändert sich nun um so ändert sich um und um Die Änderung des Flächeninhalts setzt sich dann (siehe Abbildung) zusammen aus

Dividiert man durch so ergibt sich mit

der Differenzenquotient der Produkt- oder Flächeninhaltsfunktion an der Stelle

Für gegen strebt auch (und damit der ganze letzte Summand) gegen sodass man an der Stelle

erhält, wie behauptet. Dies ist auch im Wesentlichen die Argumentation, wie sie sich in einem ersten Beweis der Produktregel 1677 in einem Manuskript von Leibniz findet. Die Produktregel, die er dort gemeinsam mit der Quotientenregel beweist, war damit eine der ersten Regeln zur Anwendung der Infinitesimalrechnung, die er herleitete. Er benutzte allerdings keinen Grenzwert, sondern noch Differentiale und schloss, dass wegfällt, weil es im Vergleich zu den anderen Summanden infinitesimal klein sei. Euler benutzte noch dasselbe Argument, erst bei Cauchy findet sich ein Beweis mit Grenzwerten:

Gegeben sei die Funktion durch Die Ableitung von an einer Stelle ist dann durch den Grenzwert des Differenzenquotienten

gegeben. Addition und Subtraktion des Terms liefert

Das Ausführen der beiden Grenzübergänge liefert die Produktregel

Verallgemeinerungen[Bearbeiten | Quelltext bearbeiten]

Produkte von Vektoren und Matrix-Vektor-Produkte[Bearbeiten | Quelltext bearbeiten]

Beim Beweis der Produktregel werden aus den Werten von Linearkombinationen (Summen, Differenzen, Produkte mit Zahlen) gebildet, ebenso aus den Werten von Die Rollen von und sind dabei klar getrennt: ist der linke Faktor, der rechte. Der Beweis überträgt sich deswegen auf alle Produktbildungen, die sowohl im linken als auch im rechten Faktor linear sind. Insbesondere gilt die Produktregel auch für

Vektoren bzw. Matrizen sind dabei als Funktionen einer unabhängigen Variablen zu verstehen.

Mehr als zwei Faktoren[Bearbeiten | Quelltext bearbeiten]

Die Produktregel kann sukzessive auch auf mehrere Faktoren angewandt werden. So wäre

und
usw.

Allgemein ist für eine Funktion die sich als Produkt von Funktionen schreiben lässt, die Ableitung

Haben die Funktionen keine Nullstellen, so kann man diese Regel auch in der übersichtlichen Form

   (oder kurz: )

schreiben; derartige Brüche bezeichnet man als logarithmische Ableitungen.

Höhere Ableitungen [Bearbeiten | Quelltext bearbeiten]

Auch die Regel für Ableitungen -ter Ordnung für ein Produkt aus zwei Funktionen war schon Leibniz bekannt und wird entsprechend manchmal ebenfalls als Leibnizsche Regel bezeichnet. Sie ergibt sich aus der Produktregel mittels vollständiger Induktion zu

Die hier auftretenden Ausdrücke der Form sind Binomialkoeffizienten. Die obige Formel enthält die eigentliche Produktregel als Spezialfall. Sie hat auffallende Ähnlichkeit zum binomischen Lehrsatz

Diese Ähnlichkeit ist kein Zufall, der übliche Induktionsbeweis läuft in beiden Fällen vollkommen analog; man kann die Leibnizregel aber auch mit Hilfe des binomischen Satzes beweisen.

Für höhere Ableitungen von mehr als zwei Faktoren lässt sich ganz entsprechend das Multinomialtheorem übertragen. Es gilt:

Höherdimensionaler Definitionsbereich[Bearbeiten | Quelltext bearbeiten]

Verallgemeinert man auf Funktionen mit höherdimensionalem Definitionsbereich, so lässt sich die Produktregel wie folgt formulieren: Es seien eine offene Teilmenge, differenzierbare Funktionen und ein Richtungsvektor. Dann gilt die Produktregel für die Richtungsableitung:

Entsprechend gilt für die Gradienten

In der Sprache der differenzierbaren Mannigfaltigkeiten lauten diese beiden Aussagen:

  • Sind ein Tangentialvektor und lokal differenzierbare Funktionen, dann gilt
  • Sind lokal differenzierbare Funktionen, so gilt die folgende Beziehung zwischen den äußeren Ableitungen:

Höhere partielle Ableitungen[Bearbeiten | Quelltext bearbeiten]

Sei Dann gilt:[1]

Holomorphe Funktionen[Bearbeiten | Quelltext bearbeiten]

Die Produktregel gilt auch für komplex differenzierbare Funktionen: Es sei und holomorph. Dann ist holomorph, und es gilt

Allgemeine differenzierbare Abbildungen[Bearbeiten | Quelltext bearbeiten]

Es seien ein offenes Intervall, eine Banachalgebra (z. B. die Algebra der reellen oder komplexen -Matrizen) und differenzierbare Funktionen. Dann gilt:

Dabei bezeichnet »·« die Multiplikation in der Banachalgebra.

Sind allgemeiner und Banachräume, und differenzierbare Funktionen, so gilt ebenfalls eine Produktregel, wobei die Funktion des Produktes von einer Bilinearform übernommen wird. Von dieser wird verlangt, dass sie stetig ist, also beschränkt:

für alle

mit einer festen Konstante . Dann gilt die Produktregel

Entsprechende Aussagen gelten für höherdimensionale Definitionsbereiche.

Leibniz-Regel für dividierte Differenzen[Bearbeiten | Quelltext bearbeiten]

Die Leibnizregel lässt sich auf dividierte Differenzen übertragen:[2]

Der Spezialfall

schließt die originale Leibnizregel mit ein.

Abstraktion: Derivationen[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Derivation (Mathematik)

Allgemein nennt man Abbildungen welche die Produktregel

erfüllen, Derivationen. Die Reihenfolge der Faktoren ist hier für den Fall einer Derivation mit einer Algebra und einem -Linksmodul gewählt.

Im Zusammenhang mit - oder -graduierten Algebren („Superalgebren“) muss der Begriff der Derivation jedoch durch den der Antiderivation ersetzt werden. Die entsprechende Gleichung lautet dann

für homogene Elemente Dabei bezeichnet den Grad von Das prominenteste Beispiel einer Antiderivation ist die äußere Ableitung für Differentialformen

Literatur[Bearbeiten | Quelltext bearbeiten]

Die Produktregel für Funktionen wird in jedem Buch erläutert, das Differentialrechnung in allgemeiner Form behandelt.

  • Otto Forster: Analysis 1. Differential- und Integralrechnung einer Veränderlichen. Vieweg, Braunschweig 72004. ISBN 3-528-67224-2.
  • Otto Forster: Analysis 2. Differentialrechnung im Rn. Gewöhnliche Differentialgleichungen. Vieweg, Braunschweig 62005. ISBN 3-528-47231-6.
  • Konrad Königsberger: Analysis. 2 Bde. Springer, Berlin 2004, ISBN 3-540-41282-4.
  • C. H. Edwards Jr.: The Historical Development of the Calculus. Springer, New York 1979.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Lawrence C. Evans: Partial Differential Equations. ISBN 0-8218-0772-2, 19. Auflage, S. 12.
  2. De Boor: Divided Differences. Surveys in Approximation Theory. Band 1, 2005, S. 46–69.
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen. Vorlage:Lesenswert/Wartung/ohne DatumVorlage:Lesenswert/Wartung/ohne Version