Projektive Auflösung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Im mathematischen Gebiet der Kategorientheorie und der homologischen Algebra ist eine projektive Auflösung eine lange exakte Sequenz aus projektiven Objekten, die in einem gegebenen Objekt endet.

Definition[Bearbeiten | Quelltext bearbeiten]

Es seien eine abelsche Kategorie (oder auch die Kategorie Grp der Gruppen) und ein Objekt aus . Dann heißt eine lange exakte Sequenz der Form

projektive Auflösung von , wenn sämtliche projektiv sind.[1][2]

Existenz[Bearbeiten | Quelltext bearbeiten]

Ist in der abelschen Kategorie jedes Objekt Quotient eines projektiven Objektes, d. h. gibt es zu jedem Objekt einen Epimorphismus , in dem projektiv ist, so sagt man auch, besitze genügend viele projektive Objekte.

Unter diesen Bedingungen gibt es auch zu jedem Objekt eine projektive Auflösung. Zunächst existiert nämlich nach Voraussetzung ein Epimorphismus , dann weiter ein Epimorphismus auf den Kern dieses Morphismus und dann per Induktion jeweils weiter .

Die wichtigste Kategorie mit genügend vielen projektiven Objekten ist die Kategorie der (Links-)Moduln über einem Ring . Ist ein solcher Modul und ist ein Erzeugendensystem, so hat man einen surjektiven Homomorphismus , indem man das -te Basiselement des freien Moduls auf abbildet. Da freie Moduln projektiv sind, ist Quotient eines projektiven Moduls und damit hat genügend viele projektive Objekte. [3]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Ist

eine projektive Auflösung und

exakt, so lässt sich jeder -Homomorphismus (nicht notwendigerweise eindeutig) zu einem kommutativen Diagramm

ergänzen.[4]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Ernst Kunz: Einführung in die kommutative Algebra und algebraische Geometrie, Vieweg (1980), ISBN 3-528-07246-6, Kapitel VII, Projektive Auflösungen
  2. P. J. Hilton: Lectures in Homological Algebra, American Mathematical Society (1971), ISBN 0821816578, Definition 2.5
  3. P. J. Hilton: Lectures in Homological Algebra, American Mathematical Society (1971), ISBN 0821816578, Satz 2.7
  4. P. J. Hilton: Lectures in Homological Algebra, American Mathematical Society (1971), ISBN 0821816578, Lemma 2.8 + anschließende Bemerkung