Punktierter topologischer Raum

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Ein punktierter topologischer Raum ist ein Paar (X,x0), bestehend aus einem topologischen Raum X und einem Punkt x0 in X (Grundpunkt, Basispunkt, ausgezeichneter Punkt). Eine punktierte (stetige) Abbildung (X,x0) → (Y,y0) ist eine stetige Abbildung X → Y, die x0 auf y0 abbildet.

Häufig wird der Grundpunkt auch einfach mit einem Stern bezeichnet.

Ist die Inklusion eine Kofaserung, so spricht man von einem wohlpunktierten Raum.[1]

Ein topologischer Raum heißt homogen, wenn je zwei punktierte topologische Räume auf ihm isomorph sind.

Kategorielle Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Die Kategorie der punktierten topologischen Räume ist isomorph zur Kommakategorie . Sie besitzt Nullobjekte (diejenigen Räume, welche nur aus dem einen Punkt bestehen). Produkte sind die gewöhnlichen Produkte topologischer Räume, Koprodukte sind Ein-Punkt-Vereinigungen, also disjunkte Vereinigungen, bei denen die jeweiligen ausgezeichneten Punkte miteinander identifiziert werden, geschrieben .

Homotopieklassen punktierter Abbildungen[Bearbeiten | Quelltext bearbeiten]

Zwei punktierte Abbildungen

heißen homotop, wenn es eine stetige Abbildung mit

gibt. Die Menge der Homotopieklassen punktierter Abbildungen wird mit bezeichnet.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Jon P. May: A Concise Course in Algebraic Topology. University of Chicago Press, Chicago IL u. a. 1999, ISBN 0-226-51183-9, Abschnitt 8.3.