Radiärsymmetrie

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Radiärsymmetrisch)
Wechseln zu: Navigation, Suche
Achtzählig drehsymmetrische Wandfliese in der Stuttgarter Wilhelma
Zweizählig drehsymmetrische Objekte in 2D
Radiärsymmetrie: Qualle Symmetrieachse parallel zur Bildebene, Symmetrie daher kaum sichtbar
Radiärsymmetrie: Korallenskelette; Symmetrieachse senkrecht zur Bildebene, Einzelskelette daher auch im Bild radiärsymmetrisch

Eine spezielle Form der Drehsymmetrie wird in der Biologie Radiärsymmetrie genannt. (Die Unterschiede zwischen beiden Begriffen werden im Abschnitt Biologie erläutert.)

Mathematisch gesehen handelt sich bei der Drehsymmetrie um eine Form der Symmetrie, bei der die Drehung eines Objektes um einen gewissen Winkel um eine Gerade (Drehachse, Symmetrieachsen) das Objekt wieder mit sich selbst zur Deckung bringt.[1] Bei zweidimensionalen mathematischen Objekten muss diese Achse als senkrecht auf der betrachteten Ebene angenommen werden. Sie verläuft dann durch den Flächen- oder Volumen-Schwerpunkt des Objektes und kann in der Ebene auch nur als Punkt dargestellt werden. Man spricht von einer n-zähligen Drehsymmetrie, wenn eine Drehung um 360°/n das Objekt auf sich selbst abbildet. Beispielsweise ist das rechts abgebildete Parallelogramm zweizählig drehsymmetrisch und besitzt eine Drehachse senkrecht zur Zeichenebene, so dass es bei Drehung um 180° auf sich selbst abgebildet wird.

Als mathematische Kurzschreibweise verwendet man hier die Schoenflies-Symbolik mit Cn für eine n-zählige Drehsymmetrie.

Manche drehsymmetrischen Objekte werden bei Drehung um einen beliebigen Winkel auf sich selbst abgebildet, etwa der Kreis, die Kugel, der Zylinder oder der Kegel. Dies nennt man Rotationssymmetrie. Ist die Drehung um einen beliebigen Winkel und eine beliebige Achse durch den Schwerpunkt möglich, so dass das Objekt auf sich selbst abgebildet wird (wie bspw. bei der Kugel), dann spricht man von Radialsymmetrie.

In der zweidimensionalen Projektion (Bild oder Zeichnung) bleibt die Drehsymmetrie erhalten, wenn die Symmetrieachse senkrecht zur Projektionsebene steht, dies hängt also lediglich vom Blickwinkel ab (siehe Abbildung Qualle und Korallenskelett).

Beispiele für Drehsymmetrie finden sich unter anderem in der Technik (Malteserkreuz, Zahnrad, Anker-Blechpakete von Elektromotoren), Kunst (Kapitelle) und der Morphologie der Lebewesen.

Unterschiedlicher Sprachgebrauch[Bearbeiten | Quelltext bearbeiten]

Die Begriff Rotationssymmetrie wird in der deutschsprachigen Fachliteratur nicht immer einheitlich verwendet. So kann es vorkommen, dass z. B. eine n-zählige Drehsymmetrie als n-fache Rotationssymmetrie bezeichnet wird.[2] Der Grund dafür dürfte darin liegen, dass der entsprechende englische Fachterminus "n-fold rotational symmetry" heißt.

Es handelt sich hierbei nicht um falschen Sprachgebrauch, sondern um konkurrierende synonyme Begriffe, bei denen noch nicht klar ist, welcher sich schließlich durchsetzen wird.

Biologie[Bearbeiten | Quelltext bearbeiten]

In der Biologie versteht man unter Radiärsymmetrie eine drei- oder mehrzählige Drehsymmetrie, wenn zusätzliche Symmetrieebenen durch die Drehachse verlaufen.[3] So besitzt z. B. der fünfarmige Seestern in Ruhelage neben seiner Drehachse fünf Symmetrieebenen, die jeweils durch einen der Arme und die Drehachse verlaufen. Eine solche höhere Symmetrie besitzt auch ein regelmäßiges Polygon. Allerdings gibt es viele drehsymmetrische Objekte (wie z. B. das weiter oben abgebildete Parallelogramm oder die achtzählige Fliese), die diese zusätzlichen Symmetrien nicht besitzen. Die Radiärsymmetrie ist also ein Spezialfall der Drehsymmetrie und wird, mathematisch gesehen, durch die jeweilige Diedergruppe Dn repräsentiert.

Dieses Symmetrie-Phänomen kann bei Lebewesen niemals dieselbe Perfektion wie bei mathematischen Objekten annehmen, wird aber dennoch als Symmetrie bezeichnet und in der Wahrnehmung auch als solche empfunden.

Radiärsymmetrisch sind viele Nesseltiere und die meisten Stachelhäuter (Pentasymmetrie; fünfzählig). Von der Radiärsymmetrie wird die Disymmetrie (2 Symmetrieebenen; Rippenquallen), und die Bilateralsymmetrie (eine Symmetrieebene; Bilateria) unterschieden.

In der Botanik kommt Radiärsymmetrie häufig beim Aufbau der Blüten vor; hier einige Beispiele für verschiedene Zähligkeit:

Man spricht auch von aktinomorphen Blüten, im Gegensatz zu disymmetrischen Blüten (Tränendes Herz, Kreuzblütler), die 2 Symmetrieebenen haben, und zygomorphen bzw. dorsiventralen Blüten (Orchideen, Lippenblütler), die nur eine Symmetrieebene haben.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Materialien aus Mathematik-Seminaren: Drehsymmetrie [1] abgerufen am 07. Januar 2017.
  2. siehe z. B. Dissertation von B. Klockow, Univ. Heidelberg, 2001, S. 52 ff [2].
  3. Lexikon der Biologie: Radiärsymmetrie [3] abgerufen am 06. Januar 2017.