Rand (Topologie)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Ein Gebiet (hellblau) und sein Rand (dunkelblau).

Im mathematischen Teilgebiet der Topologie ist der Begriff Rand eine Abstraktion der anschaulichen Vorstellung einer Begrenzung eines Bereiches.

Definition[Bearbeiten | Quelltext bearbeiten]

Definitionsgemäß ist der Rand einer Teilmenge eines topologischen Raumes die Differenzmenge zwischen Abschluss und Innerem von . Der Rand einer Menge wird üblicherweise mit bezeichnet, also:

(*) .

Die Punkte aus werden Randpunkte genannt.

Erläuterung[Bearbeiten | Quelltext bearbeiten]

Jeder Randpunkt von ist auch Berührungspunkt von und jeder Berührungspunkt von ist Element von oder Randpunkt von . Die Berührungspunkte von zusammen bilden den Abschluss von . Es ist also

(**)

Zu jeder Teilmenge zerfällt der topologische Raum in das Innere von , den Rand von und das Äußere von :

Abgrenzung[Bearbeiten | Quelltext bearbeiten]

Damit verwandte aber abweichende Randbegriffe gibt es in der algebraischen Topologie und in der Theorie der berandeten Mannigfaltigkeiten.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Der Rand einer Menge ist stets abgeschlossen.
  • Der Rand einer Menge besteht genau aus den Punkten, für die gilt, dass jede ihrer Umgebungen sowohl Punkte aus als auch Punkte, die nicht in liegen, enthält.
  • Der Rand einer Menge ist stets gleich dem Rand ihres Komplements.
  • Der Rand einer Menge ist der Schnitt des Abschlusses der Menge mit dem Abschluss ihres Komplementes.
  • Eine Menge ist genau dann abgeschlossen, wenn sie ihren Rand enthält.
  • Eine Menge ist genau dann offen, wenn sie zu ihrem Rand disjunkt ist.
  • Eine Menge ist genau dann offen und abgeschlossen, wenn ihr Rand leer ist.
  • Es seien ein topologischer Raum, eine offene Teilmenge mit der Teilraumtopologie und eine Teilmenge. Dann ist der Rand von in gleich dem Schnitt von mit dem Rand von in . Lässt man die Voraussetzung der Offenheit von fallen, so gilt die entsprechende Aussage im Allgemeinen nicht, selbst wenn ist. Im Beispiel , ist auch , und diese Menge besitzt in gar keinen Rand, obgleich sie in mit diesem identisch ist.

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Ist eine offene oder abgeschlossene Kreisscheibe in der Ebene , so ist der Rand von die zugehörige Kreislinie.
  • Der Rand von als Teilmenge von ist ganz .

Randaxiome[Bearbeiten | Quelltext bearbeiten]

Für einen topologischen Raum ist das Bilden des Randes ein Mengenoperator auf , der Potenzmenge von . Dieser erfüllt für und stets die folgenden vier Regeln, die sogenannten Randaxiome:[1][2]

(R1)  
(R2)  
(R3)  
(R4)  

Durch die vier Regeln (R1) - (R4) ist die Struktur des topologischen Raum eindeutig festgelegt. Der mittels (**) gegebene Mengenoperator auf ist ein Abschlussoperator im Sinne der Kuratowskischen Hüllenaxiome und so in Verbindung mit (*) umkehrbar eindeutig mit dem Randoperator verknüpft.

Dabei gilt für das Mengensystem , also die Menge der offenen Mengen von :

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Vaidyanathaswamy: Set topology. 1964, S. 57–58.
  2. Schubert: Topologie. 1975, S. 16.