Glomeruläre Filtrationsrate

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Renale Clearance)
Wechseln zu: Navigation, Suche

Die glomeruläre Filtrationsrate (GFR) gibt das Gesamtvolumen des Primärharns an, das von allen Glomeruli beider Nieren zusammen pro Zeit gebildet wird. Dies sind bei einem Menschen mit normalen Blutdruckwerten zirka 120 Milliliter pro Minute oder zirka 170 Liter pro Tag. Die GFR sinkt physiologisch mit zunehmendem Alter oder pathologisch bei Nierenerkrankungen verschiedener Art.

Die GFR ist für die Einschätzung der Nierenfunktion die wichtigste Größe. Sie wird im klinischen Alltag per Näherungsformel aus der Plasmakreatininkonzentration berechnet oder als Kreatininclearance bestimmt (was genauer, aber aufwändiger ist, weil zusätzlich ein 24-h-Sammelurin benötigt wird).

Physiologische Zusammenhänge[Bearbeiten | Quelltext bearbeiten]

Fraktionelle Ausscheidung[Bearbeiten | Quelltext bearbeiten]

Die meisten Stoffe, die im Harn erscheinen, werden im Tubulussystem teilweise rückresorbiert oder aber in das Tubuluslumen hinein sezerniert. Dadurch unterscheidet sich der Stoffmengenstrom (Stoffmenge pro Zeit) der Ausscheidung über den Harn vom Stoffmengenstrom über den glomerulären Filter . Der Anteil der ausgeschiedenen an der filtrierten Stoffmengen für einen gegebenen Stoff heißt fraktionelle Ausscheidung:

Die fraktionelle Ausscheidung kann minimal 0 (vollständige Rückresorption, Beispiel Glucose) und maximal etwa 5 sein (ausgeprägte Sekretion, sodass das gesamte die Niere durchströmende Plasma geklärt wird, Beispiel PAH).

Glomeruläre Filtrationsrate[Bearbeiten | Quelltext bearbeiten]

Der Stoffmengenstrom der Ausscheidung lässt sich ermitteln, indem der Volumenstrom (Harnvolumen pro Zeit) mit der Konzentration des betrachteten Stoffes im Harn multipliziert wird:

Damit lässt sich der Stoffmengenstrom über den glomerulären Filter ausdrücken als:

Auch der Stoffmengenstrom über den glomerulären Filter kann als Produkt von Konzentration und Volumenstrom ausgedrückt werden, sofern der betrachtete Stoff frei filtriert wird (d. h. die Konzentration im Primärharn gleich der Plasmakonzentration ist):

Der Volumenstrom über den glomerulären Filter ist nichts anderes als die glomeruläre Filtrationsrate. Somit ergibt sich die Formel:

Clearance[Bearbeiten | Quelltext bearbeiten]

Clearance bezeichnet das fiktive Plasmavolumen, das pro Zeiteinheit von einer bestimmten Substanz befreit wird. Den Begriff schufen 1928 Möller, McIntosh und van Slyke für die Ausscheidung von Harnstoff.[1] Die Gleichung der Clearance lautet

,

sie ergibt sich analog zu obiger Herleitung aus der Umrechnung des Stoffmengenstroms der Ausscheidung in einen Plasmavolumenstrom. Zwischen Clearance und glomerulärer Filtrationsrate besteht der Zusammenhang

.

Die Bestimmung der Clearance eines Stoffes ist problemlos möglich, da sie anders als die Bestimmung der GFR keine Kenntnis der fraktionellen Ausscheidung verlangt. Allerdings gibt es Stoffe, die frei filtriert und weder resorbiert noch sekretiert werden, sodass die fraktionelle Ausscheidung 1 ist und die Clearance mit der GFR gleichgesetzt werden kann.

Exogene und endogene Marker[Bearbeiten | Quelltext bearbeiten]

Exogene Markersubstanzen werden durch Injektion und Infusion zugeführt:

Für die klinische und ambulante Routinediagnostik sind exogene Marker in der Regel zu aufwändig. Die glomeruläre Filtrationsrate wird daher im klinischen Alltag anhand der endogenen Marker Kreatinin und Cystatin C bestimmt (siehe unten).[3]

Kreatinin[Bearbeiten | Quelltext bearbeiten]

Kreatinin entsteht im Muskelgewebe durch den Abbau von Kreatin, seine Plasmakonzentration unterliegt geringen Schwankungen. Kreatinin wird in idealisierter Betrachtung frei im Glomerulus filtriert und durch die Niere weder rückresorbiert noch sezerniert. Somit ist der glomeruläre Stoffmengenstrom gleich dem Stoffmengenstrom der Ausscheidung und – weil Kreatinin nur über die Niere ausgeschieden wird – auch gleich der Rate der Kreatininbildung im Stoffwechsel . Unter diesen Annahmen lässt sich die GFR als Quotienten von Kreatininbildungsrate und Plasmakreatininkonzentration berechnen:

Die GFR ist demnach umgekehrt proportional zur Plasmakreatininkonzentration. Bei einer hohen glomerulären Filtrationsrate entsprechen daher kleine Änderungen des Serum-Kreatinins großen Änderungen der glomerulären Filtrationsrate, bei einer niedrigen glomerulären Filtrationsrate entsprechen dagegen große Änderungen des Serum-Kreatinins nur kleinen Änderungen der glomerulären Filtrationsrate. So entspricht bei einer 60-jährigen Frau ein Anstieg des Serum-Kreatinins von 0,8 auf 0,9 mg/dl einem Abfall der glomerulären Filtrationsrate um 10 ml/min von 78 auf 68 ml/min, ein gleich großer Abfall der glomerulären Filtrationsrate von 20 auf 10 ml/min geht dagegen mit einem Anstieg des Serum-Kreatinins von 2,6 auf 4,8 mg/dl einher.

Die reine Betrachtung der Konzentration lässt bereits gewisse Aussagen über die Nierenfunktion zu, da bei einem größeren Menschen, der mehr Kreatinin bildet, auch eine höhere GFR zu fordern ist. In den frühen Stadien einer Nierenerkrankung ist das Serum-Kreatinin aber ein ungenauer Marker von geringer Sensitivität, insbesondere bei Menschen mit geringerer Muskelmasse, wie Frauen, älteren Menschen oder Diabetikern. Wird ausschließlich das Serum-Kreatinin als Marker einer eingeschränkten Nierenfunktion benutzt, kann die Diagnose einer Niereninsuffizienz übersehen werden. Alle kreatininbasierten Methoden zur Bestimmung der GFR stehen vor dem Problem, dass in Wahrheit 10–40 % des im Urin ausgeschiedenen Kreatinins nicht aus der glomerulären Filtration stammt, sondern in den Tubuli sezerniert wird.

Kreatinin-Clearance[Bearbeiten | Quelltext bearbeiten]

Da sowohl der Volumenstrom des Harns und die Konzentration im Harn (per 24-h-Sammelurin) als auch die Konzentration im Plasma (per Blutabnahme) im klinischen Setting bestimmt werden können, lässt sich die Kreatinin-Clearance nach obiger Formel aus den Messwerten errechnen. Das Ergebnis der Berechnung kann anschließend auf die Körperoberfläche normiert werden, damit der Vergleich mit Normwerten für eine Körperoberfläche von 1,73 m² möglich wird. Die Methode unterliegt folgenden Einschränkungen:

  • Fehler beim Sammeln des Urins: Die Bestimmung der Kreatinin-Clearance setzt ein exaktes Sammeln des Urins über 24 Stunden voraus. Zu Beginn der Sammelperiode muss die Harnblase vollständig entleert werden. Während der Sammelperiode muss der Urin vollständig gesammelt werden. Am Ende der Sammelperiode nach exakt 24 Stunden muss die Blase vollständig in das Urin-Sammelgefäß entleert werden. In der Praxis kommt es häufig zu Fehlern beim Sammeln des Urins.
  • Tubuläre Kreatinin-Sekretion: Bei normaler oder gering eingeschränkter Nierenfunktion ist der Anteil des tubulär sezernierten Kreatinins gegenüber der glomerulär filtrierten Menge gering und kann vernachlässigt werden. Bei schwerer Nierenfunktionseinschränkung kann der tubulär sezernierte Anteil über 50 % der ausgeschiedenen Kreatinin-Menge betragen, die glomeruläre Filtrationsrate wird dadurch unter Umständen erheblich überschätzt. Liegt die glomeruläre Filtrationsrate unter 30 ml/min, sollte daher zusätzlich die Harnstoff-Clearance bestimmt werden. Harnstoff wird im Gegensatz zu Kreatinin tubulär rückresorbiert, die Harnstoff-Clearance unterschätzt daher die glomeruläre Filtrationsrate. Bildet man den Mittelwert zwischen Kreatinin- und Harnstoff-Clearance, heben sich die Fehler beider Messungen in Näherung auf.

eGFR[Bearbeiten | Quelltext bearbeiten]

Wie oben festgestellt lässt sich die GFR durch den Quotienten von Bildungsrate und Plasmakonzentration des Kreatinins annähern. Aufgrund unterschiedlicher Bildungsraten entspricht ein Serum-Kreatinin von 1,3 mg/dl bei einem 20-jährigen Mann einer glomerulären Filtrationsrate von 75 ml/min, bei einer 80-jährigen Frau dagegen einer glomerulären Filtrationsrate von 50 ml/min. Die Bildungsrate hängt von der Muskelmasse ab; wenn es also gelingt, die Bildungsrate aus dem Körperbau des Patienten abzuschätzen, kann auf das aufwändige Urinsammeln verzichtet werden. Näherungsformeln, die auf diesen Überlegungen beruhen, berücksichtigen neben der gemessenen Kreatininkonzentration leicht zugängliche Werte wie Alter, Geschlecht oder Hautfarbe. Solche geschätzen Filtrationsraten werden als eGFR (estimated GFR) ausgewiesen. Als Hilfsmittel sind verschiedene Online-Nierenfunktionsrechner verfügbar (siehe Weblinks).

CKD-EPI-Formel[Bearbeiten | Quelltext bearbeiten]

Diese Formel wurde 2009 veröffentlicht und berücksichtigt die Einflussgrößen Alter, Hautfarbe, Geschlecht und Kreatininbereiche. Diese Formel wurde 2012 nochmals überarbeitet. Wurde bislang die MDRD-Formel zur Berechnung der GFR herangezogen, zeigen neue Daten, dass die sogenannte EPI-CKD-Formel, insbesondere im Grenzbereich von gesunder Funktion und beginnender Niereninsuffizienz, noch zuverlässiger ist.

CKD-EPI nutzt die gleichen Parameter wie die MDRD-Formel, schätzt die GFR jedoch in höheren GFR-Bereichen besser, da unterschiedliche Kreatininbereiche berücksichtigt werden und außerdem hinsichtlich des Serum-Kreatinin hinsichtlich Frauen (< / > 0,7 mg/dl) und Männern (< / > 0,9 mg/dl) differenziert wird. In den Stadien 3 bis 5 ist jedoch kein wesentlicher Unterschied.

Bei allen Angaben der GFR sollte generell die Berechnungsmethode vom Labor angegeben werden, ebenso ein Hinweis auf die Normierung.

Cockcroft-Gault-Formel[Bearbeiten | Quelltext bearbeiten]

Die Cockcroft-Gault-Formel wurde 1973 entwickelt. Zu Grunde lagen die Daten von 249 Männern mit einer Kreatinin-Clearance zwischen 30 und 130 ml/min.

  • : Kreatinin-Clearance
  • : Serum-Kreatinin in mg/dl
  • Alter: Alter in Jahren
  • Gewicht: Körpergewicht in kg.

Das Ergebnis ist nicht auf die Körperoberfläche bezogen. Die Cockcroft-Gault-Formel überschätzt die glomeruläre Filtrationsrate, da sie die tubuläre Sekretion nicht berücksichtigt.

MDRD-Formel (Modification of Diet in Renal Disease)[Bearbeiten | Quelltext bearbeiten]

Seit 1989 wurde an einem großen Kollektiv von Patienten mit Nierenfunktionseinschränkung die Auswirkung einer proteinarmen Kost auf den Verlauf einer chronischen Nierenerkrankung untersucht (Modification of Diet in Renal Disease Study, MDRD-Studie).[5] Zu Beginn der Studie wurde bei allen Studienteilnehmern Serum-Kreatinin, Kreatinin-Clearance und glomeruläre Filtrationsrate (mittels [125I]-Iothalamat) bestimmt.[6] Anhand der Daten von 1628 Studienteilnehmern wurde 1999 die MDRD-Formel entwickelt.[7] Die Einbeziehung der Hautfarbe berücksichtigt die erhöhte Muskelmasse von Amerikanern schwarzafrikanischer Herkunft. Es gibt mehrere Varianten der MDRD-Formel, als Standard hat sich die Vier-Variablen-MDRD-Formel durchgesetzt, in die Alter, Geschlecht, Hautfarbe und Serum-Kreatinin (sCr) eingehen (Angabe in exponentieller und in logarithmischer Schreibweise):

  • eGFR: estimated Glomerular Filtration Rate, geschätzte glomeruläre Filtrationsrate
  • : Serum-Kreatinin in mg/dl
  • Alter: Alter in Jahren

Die MDRD-Formel benötigt keine Angabe des Körpergewichts, da sie die glomeruläre Filtrationsrate für eine standardisierte Körperoberfläche von 1,73 m² angibt. Sie ist bei Menschen mit moderater bis schwerer chronischer Einschränkung der Nierenfunktion genauer als Cockcroft-Gault-Formel und Kreatinin-Clearance. Der Wert der MDRD-Formel bei Nierengesunden ist nicht geklärt, eine Anwendung bei hospitalisierten Patienten wird nicht empfohlen.[8]

Counahan-Barratt-Formel[Bearbeiten | Quelltext bearbeiten]

Bei Anwendung auf die Laborwerte von Kindern liefern die bisher genannten Formeln nur sehr fehlerbehaftete Ergebnisse. Daher kann bei Kindern die speziell entwickelte Counahan-Barratt-Formel verwendet werden.[9]

  • KL: Körperlänge in cm
  • : Serum-Kreatinin in mg/dl

Einschränkungen der Näherungsformeln[Bearbeiten | Quelltext bearbeiten]

Die Näherungsformeln sind validiert für ambulante, chronisch nierenkranke Patienten mit moderater bis schwerer Nierenfunktionseinschränkung (Stadium 3 und 4). Die Formeln sind nicht geeignet zur Bestimmung der glomerulären Filtrationsrate bei Personen mit normaler Nierenfunktion oder leichter Nierenfunktionseinschränkung. Insbesondere die MDRD-Formel unterschätzt bei Menschen mit einer glomerulären Filtrationsrate über 60 ml/min diese um ca. 10 ml/min.[10] Ebenso wenig geeignet sind die Näherungsformeln zur Bestimmung der glomerulären Filtrationsrate bei Krankenhauspatienten mit akuter Nierenfunktionsverschlechterung, bei Menschen mit schwerem Übergewicht, bei stark verminderter Muskelmasse (Amputation von Gliedmaßen, Unterernährung) oder bei Menschen mit besonders hoher (Nahrungsergänzungen bei Bodybuildern) oder niedriger (Vegetarier) Kreatin-Zufuhr mit der Nahrung. Als Mittel zum bevölkerungsweiten Screening und zur Überwachung der Nierenfunktion im besonders wichtigen Frühstadium der diabetischen Nephropathie sind die Näherungsformeln ebenfalls nicht geeignet.[11]

Kreatininblinder Bereich[Bearbeiten | Quelltext bearbeiten]

Der Graph der Beziehung zwischen dem Serumkreatininspiegel und der filtrativen Nierenfunktion ist eine Hyperbel, weil Kreatinin in allen Schätzformeln für die GFR im Nenner steht. Bei einer großen GFR führen schon kleine Veränderungen des Serum-Kreatinins zu großen Veränderungen der GFR. Bei erheblichen Verkleinerungen der GFR steigt der Kreatininspiegel nur wenig an. Dieser Bereich wird in der Fachliteratur als kreatininblinder Bereich (englisch: creatinine-blind range) bezeichnet.[12] Dieser kreatininblinde Bereich ist jedoch kein spezifischer Unsicherheitsbereich von Kreatinin, wie in einer großen internationalen Untersuchung gezeigt wurde. Exakte Messwerte führen bei den üblichen Substraten mit den üblichen Schätzformeln zu exakten Ergebnissen.[13] [14] Die Eigenschaften einer Hyperbel müssen jedoch berücksichtigt werden.

Cystatin C[Bearbeiten | Quelltext bearbeiten]

Cystatin C ist ein kleines, nicht glykosyliertes Protein (13 kDa, 122 Aminosäuren) aus der Familie der Cystein-Proteinase-Inhibitoren. Cystatin C wird in einer konstanten Rate von allen kernhaltigen Körperzellen produziert. Aufgrund seiner geringen Größe und eines basischen isoelektrischen Punktes (pI≈9,0) wird Cystatin C im Glomerulus frei filtriert. Im Nierentubulus wird Cystatin C nicht sezerniert. Es wird zu über 99 % durch die Tubulusepithelzellen rückresorbiert, gelangt aber nicht in den Blutkreislauf zurück, da es von den Tubuluszellen abgebaut wird. Die Konzentration von Cystatin C im Urin ist deshalb sehr gering, eine Berechnung der Cystatin-C-Clearance über Sammelurin nicht möglich, aber auch nicht erforderlich. Da Cystatin C konstant gebildet wird und in der Niere frei filtriert, nicht tubulär sezerniert wird und nach Filtration nicht in die Blutzirkulation zurückkehrt, ist es ein besserer Filtrationsmarker als Kreatinin oder Harnstoff, insbesondere bei leichter Nierenfunktionseinschränkung, vermehrter Muskelmasse[15] oder akutem Nierenversagen.[16][17]

Auch die Cystatin-C-Bestimmung ist nicht frei von Einflussfaktoren. Höhere Cystatin-C-Spiegel werden bei Schilddrüsenunterfunktion (Hypothyreose), Einnahme von Cortison, bei rheumatoider Arthritis und schwarzafrikanischer Herkunft gefunden. Niedrigere Spiegel hingegen finden sich bei Schilddrüsenüberfunktion (Hyperthyreose) und weiblichem Geschlecht. Zudem ist die Cystatin-C-Bestimmung bislang nicht standardisiert und teurer als die Bestimmung des Kreatinins.[18]

Praktische Anwendungen[Bearbeiten | Quelltext bearbeiten]

Klassifizierung der Nierenfunktion[Bearbeiten | Quelltext bearbeiten]

Die Nierenfunktionsleistung wird gemäß der Empfehlung der Kidney Disease Outcome Quality Initiative (KDOQI) in folgende Stufen eingeteilt:

Grad der Nierenschädigung (Clearance in ml/min):

  • Stadium I: > 90 bedeutet normale oder erhöhte GFR, aber (wie in Stadium II) Eiweiß im Urin oder pathologischer Befund in bildgebendem Verfahren
  • Stadium II: 60–89 bedeutet geringgradiger Funktionsverlust
  • Stadium III: 30–59 bedeutet mittelgradiger Funktionsverlust
  • Stadium IV: 15–29 bedeutet schwerer Funktionsverlust
  • Stadium V: < 15 bedeutet Nierenversagen

Nierenfunktion in Abhängigkeit vom Alter[Bearbeiten | Quelltext bearbeiten]

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

Im Rahmen einer Studie (NHANES III) wurde anhand von 10.000 in den USA lebenden Menschen die Nierenfunktion überprüft. Dabei wurde festgestellt, dass die Nierenfunktion mit dem Alter abnimmt. Dies ist unabhängig von Hautfarbe und Geschlecht, jeweils bezogen auf eine Standardkörperoberfläche von 1,73 m². Eine gesunde Niere verliert pro Jahr etwa 0,7 % bis 1 % der Nierenleistung.[19][20]

     eGFR im jeweiligen Alter

Alter (in Jahren) Mittlere eGFR
20–29 116 ml/min
30–39 107 ml/min
40–49 99 ml/min
50–59 93 ml/min
60–69 85 ml/min
über 70 75 ml/min

Diagnose chronischer Nierenkrankheiten[Bearbeiten | Quelltext bearbeiten]

Eine chronische Nierenkrankheit liegt vor, wenn über drei Monate die glomeruläre Filtrationsrate unter 60 ml/min liegt oder über einen ebensolchen Zeitraum Eiweiß im Urin nachweisbar ist. Da die Näherungsformeln bei einer Reduktion der glomerulären Filtrationsrate unter 60 ml/min hinreichend genaue Werte liefern und die Eiweißausscheidung anhand des Eiweiß/Kreatinin-Quotienten im Spontanurin quantifiziert werden kann, ist zur Diagnose einer chronischen Nierenkrankheit das Sammeln des Urins über 24 Stunden nicht mehr zwingend nötig.[21]

Quantifizierung der Progression chronischer Nierenkrankheiten[Bearbeiten | Quelltext bearbeiten]

Wegen der antiproportionalen Korrelation zwischen Serum-Kreatinin und glomerulärer Filtrationsrate lässt sich die Rate des Nierenfunktionsverlustes in einer bestimmten Zeiteinheit nur ungenau aus der Änderung des Serum-Kreatinins abschätzen. Bei einem 50-jährigen entspricht ein Anstieg des Serum-Kreatinins von 1,0 auf 2,0 mg/dl einem Abfall der glomerulären Filtrationsrate um 46 ml/min, ein weiterer Anstieg des Serum-Kreatinins von 2,0 auf 3,0 mg/dl entspricht dagegen nur noch einem Abfall der glomerulären Filtrationsrate um 14 ml/min.

Komplikationen chronischer Nierenkrankheiten[Bearbeiten | Quelltext bearbeiten]

Bei einem Abfall der glomerulären Filtrationsrate unter 60 ml/min treten mannigfaltige Komplikationen auf, insbesondere Bluthochdruck, Malnutrition, Blutarmut und Knochenerkrankungen. Da diese Komplikationen frühzeitig behandelt werden müssen, sind bei einem Abfall der glomerulären Filtrationsrate unter 60 ml/min zusätzliche diagnostische und therapeutische Maßnahmen erforderlich. Bei einem weiteren Absinken der glomerulären Filtrationsrate unter 30 ml/min sollte ein Nephrologe hinzugezogen werden, da bei einer glomerulären Filtrationsrate unter 15 ml/min ein Nierenersatzverfahren wie Dialyse oder Nierentransplantation erforderlich wird.

Dosierung von Medikamenten[Bearbeiten | Quelltext bearbeiten]

Viele Medikamente (in Deutschland im Mittel jeder 6. Wirkstoff) werden durch die Nieren ausgeschieden. Bei eingeschränkter Nierenfunktion ist daher oftmals eine Anpassung der Dosis erforderlich. Insbesondere die seit 1973 gebräuchliche Cockcroft-Gault-Formel wird in großem Umfang bei der Berechnung von Medikamentendosierungen in Abhängigkeit von der Nierenfunktion eingesetzt (siehe auch Dosisanpassung bei Niereninsuffizienz). Als weiterführende Informationsquelle ist hier die Webseite Dosing.de des Universitätsklinikums Heidelberg zu empfehlen.

Glomeruläre Filtrationsrate als Risikofaktor[Bearbeiten | Quelltext bearbeiten]

Mit zunehmendem Abfall der glomerulären Filtrationsrate steigt die Häufigkeit kardiovaskulärer Erkrankungen wie Schlaganfall und Herzinfarkt sowie die Gesamtsterblichkeit (Mortalität).[22] Eine verminderte glomeruläre Filtrationsrate ist damit ein kardiovaskulärer Risikofaktor. Eine besonders hohe Korrelation besteht zwischen kardiovaskulärem Risiko und Cystatin-C-Spiegel.

Evaluierung vor Nierentransplantation[Bearbeiten | Quelltext bearbeiten]

Aufgrund der allgemeinen Organknappheit sind die Kriterien, nach denen ein potentieller Nierenspender akzeptiert wird, in den letzten Jahren gelockert worden. Es wird jedoch gefordert, dass bei einem Nierenspender die glomeruläre Filtrationsrate über 80 ml/min liegt.[23]

Messung der Clearance versus Näherungsformeln[Bearbeiten | Quelltext bearbeiten]

Wegen der Einschränkungen der Näherungsformeln ist eine Bestimmung der glomerulären Filtrationsrate mittels 24-h-Sammelurin erforderlich

  • bei Personen mit besonders niedrigem oder hohem Körpergewicht,
  • bei besonders fleischarmer oder fleischreicher Ernährung,
  • bei Personen mit Amputation von Gliedmaßen,
  • bei rascher Änderung der Nierenfunktion,
  • bei Diabetikern in frühen Stadien der Nierenbeteiligung,
  • wenn bei normaler oder milde eingeschränkter Nierenfunktion eine genaue Kenntnis der glomerulären Filtrationsrate erforderlich ist, z. B. wenn eine Nierenspende oder die Behandlung mit nierenschädlichen Medikamenten geplant ist.

Die Bestimmung der Nierenfunktion mittels exogener Markersubstanzen ist in der Regel nur noch im Rahmen von Forschungsvorhaben erforderlich.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Robert Franz Schmidt, Florian Lang, Manfred Heckmann (Hrsg.): Physiologie des Menschen. 31. Auflage. Springer Medizin Verlag, Heidelberg 2010, ISBN 978-3-642-01650-9, Kapitel 29.10 Messgrößen der Nierenfunktion.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Niere – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
  • Nierenfunktionsrechner – neu: Nierenfunktionsrechner eGFR-Online-Rechner berücksichtigt Formeln CKD-EPI/ MDRD/ Cockcroft-Gault/Majo/ Kreatinin und Cystatin-C sowie Formeln für Jugendliche. Weiterhin gibt die Web-Seite hilfreiche Informationen zur gesunden Nieren, zu Nierenerkrankungen, zu den Stadien, zu den Markern
  • Thomas, Christian; Thomas, Lothar: Niereninsuffizienz – Bestimmung der glomerulären Funktion. In: Dtsch Arztebl Int. Nr. 106(51-52), 2009, S. 849–854 (aerzteblatt.de).
  • www.dosing.de – Liste nierenrelevanter Arzneimittel (Dosierungshinweise, Dettli-Formel, GFR-Berechnung, Dosisanpassung bei Niereninsuffizienz) des Universitätsklinikums Heidelberg
  • ge-healthcare-buchler.de – Berechnung der GFR nach Cockcroft-Gault-Formel, hier Kalkulator als Freewareprogramm zum Download
  • Kreatinin-Clearance-Rechner – Bestimmung der Nierenfunktion anhand der MDRD- und der Cockcroft-Gault-Formel incl. Kalkulator zum Download (industriegesponsorte Seite)
  • GFR Kalkulator Cockcroft-Gault – Online-GFR-Kalkulator nach Cockcroft-Gault-Formel
  • GFR Kalkulator Jeliffe – Online-GFR-Kalkulator nach Jeliffe-Formel
  • GFR Kalkulator Chatelut – Online-GFR-Kalkulator nach Chatelut-Formel

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Horst Kremling: Zur Entwicklung der Nierendiagnostik. In: Würzburger medizinhistorische Mitteilungen 8, 1990, S. 27–32; hier: S. 29 f.
  2. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. In: American journal of kidney diseases : the official journal of the National Kidney Foundation. Band 39, Nummer 2 Suppl 1, Februar 2002, S. S1–266, PMID 11904577.
  3. a b L. A. Stevens et al.: Assessing Kidney Function -- Measured and Estimated Glomerular Filtration Rate. In: N Engl J Med. Nr. 354, 2006, S. 2473–2483 (content.nejm.org).
  4. Lesley A Stevens, Andrew S Levey: Measured GFR as a confirmatory test for estimated GFR. In: Journal of the American Society of Nephrology. 20, Nr. 11, November 2009, ISSN 1533-3450, S. 2305-2313. doi:10.1681/ASN.2009020171. PMID 19833901.
  5. Saulo Klahr, Andrew S. Levey, Gerald J. Beck, Arlene W. Caggiula, Lawrence Hunsicker, John W. Kusek, Gary Striker, The Modification of Diet in Renal Disease Study Group: The Effects of Dietary Protein Restriction and Blood-Pressure Control on the Progression of Chronic Renal Disease. In: N Engl J Med. 330, Nr. 13, 31. März 1994, S. 877-884. doi:10.1056/NEJM199403313301301.
  6. AS Levey, T Greene, MD Schluchter, PA Cleary, PE Teschan, RA Lorenz, ME Molitch, WE Mitch, C Siebert, PM Hall: Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. In: J Am Soc Nephrol. 4, Nr. 5, 1. November 1993, S. 1159-1171.
  7. A S Levey, J P Bosch, J B Lewis, T Greene, N Rogers, D Roth: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. In: Annals of Internal Medicine. 130, Nr. 6, 16. März 1999, ISSN 0003-4819, S. 461-470. PMID 10075613.
  8. GL Myers et al.: Recommendations for Improving Serum Creatinine Measurement: A Report from the Laboratory Working Group of the National Kidney Disease Education Program. In: Clin Chem. Nr. 52, 2006, S. 5–18, PMID 16332993 (clinchem.org).
  9. Counahan R Barratt TM., Chantler C, Ghazali S, Kirkwood B, Rose F: Estimation of glomerular filtration rate from plasma creatinine concentration in children.. In: Archives of Disease in Childhood. 51, Nr. 11, S. 857-858. PMID 1008594.
  10. Stevens, Lesley A. et al.: Evaluation of the Modification of Diet in Renal Disease Study Equation in a Large Diverse Population. In: J Am Soc Nephrol. Nr. 18, 2007, S. 2749–2757 (asnjournals.org).
  11. Nephrology beyond JASN. Eberhard Ritz Feature Editor: Estimated GFR: Are There Limits to Its Utility? J Am Soc Nephrol, 2006, 17, S. 2077–2085 Zweiter Artikel des Features!
  12. Joachim Böhler: "Beurteilung der Nierenfunktion und diagnostische Maßnahmen bei Nierenerkrankungen", in: Ulrich Kuhlmann, Joachim Böhler, Friedrich C. Luft, Mark Dominik Alscher und Ulrich Kunzendorf (Herausgeber): "Nephrologie", 6. Auflage, Thieme-Verlag, Stuttgart und New York 2015, ISBN 9783137002062, Seiten 30-69, Seiten 34 und 35.
  13. K. S. Spanaus, Barbara Kollerits, E. Ritz, Martin Hersberger, Florian Kronenberg und Arnold von Eckardstein: "Serum creatinine, cystatin C, and beta-trace protein in diagnostic staging and predicting progression of primary nondiabetic chronic kidney disease", in: Clinical Chemistry, 2010 May; 56 (5): Seiten 740 bis 749.
  14. R. Neil Dalton: "Serum Creatinine and Glomerular Filtration Rate: Perception and Reality", Editorial in "Clinical Chemistry" 2010, 56: 5, Seiten 687 bis 689. - "there is no 'creatinine-blind range'"; deutsch: "Es gibt keinen kreatininblinden Bereich." (Zitat Seite 688).
  15. Alessandra Calábria Baxmann u. a.: Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. In: Clin J Am Soc Nephrol. Nr. 3, 2008, S. 348–354 (cjasn.asnjournals.org).
  16. M Mussap, M Plebani: Biochemistry and clinical role of human cystatin C. In: Crit Rev Clin Lab Sci. Nr. 41(5-6), 2004, S. 467–550, PMID 15603510.
  17. O. F. Laterza u. a.: Cystatin C: An Improved Estimator of Glomerular Filtration Rate? In: Clinical Chemistry. Nr. 48, 2002, S. 699–707 (clinchem.org Abstract).
  18. Devraj Munikrishnappa: Limitations of Various Formulae and Other Ways of Assessing GFR in the Elderly: Is There a Role for Cystatin C? In: Geriatric Nephrology Curriculum. 2009, S. 1–6.
  19. Josef Coresh, Brad C. Astor u. a.: Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. In: American Journal of Kidney Diseases. 41, 2003, S. 1, doi:10.1053/ajkd.2003.50007.
  20. Glomerular Filtration Rate (GFR) Calculators
  21. J. A. Vassalotti, L. A. Stevens, A. S. Levey: Testing for chronic kidney disease: a position statement from the National Kidney Foundation. In: American journal of kidney diseases : the official journal of the National Kidney Foundation. Band 50, Nummer 2, August 2007, S. 169–180, doi:10.1053/j.ajkd.2007.06.013, PMID 17660017 (Review).
  22. Kunihiro Matsushita, et al.: Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. In: Lancet. 375, Nr. 9731, 12. Juni 2010, ISSN 1474-547X, S. 2073-2081. doi:10.1016/S0140-6736(10)60674-5. PMID 20483451.
  23. Emilio D Poggio, et al.: Demographic and clinical characteristics associated with glomerular filtration rates in living kidney donors. In: Kidney International. 75, Nr. 10, Mai 2009, ISSN 1523-1755, S. 1079-1087. doi:10.1038/ki.2009.11. PMID 19212414.
Gesundheitshinweis Dieser Artikel behandelt ein Gesundheitsthema. Er dient nicht der Selbstdiagnose und ersetzt keine Arztdiagnose. Bitte hierzu diese Hinweise zu Gesundheitsthemen beachten!