Satz des Thales

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Satz des Thales ist ein Satz der Geometrie und ein Spezialfall des Kreiswinkelsatzes. Er lautet: Konstruiert man ein Dreieck aus den beiden Endpunkten des Durchmessers eines Kreises und einem weiteren Punkt dieses Kreises, so erhält man immer ein rechtwinkliges Dreieck.

Der erste Beweis wird dem antiken griechischen Mathematiker und Philosophen Thales von Milet zugeschrieben.[1] Die Aussage des Satzes war bereits vorher in Ägypten und Babylonien bekannt.

Formulierung des Satzes und seiner Umkehrung[Bearbeiten | Quelltext bearbeiten]

Halbkreis mit rechtwinkligen Dreiecken

Kurzformulierung: Alle Winkel am Halbkreisbogen sind rechte Winkel.

Exakte Formulierung: Konstruiert man ein Dreieck aus den beiden Endpunkten des Durchmessers eines Halbkreises (Thaleskreis) und einem weiteren Punkt dieses Halbkreises, so erhält man immer ein rechtwinkliges Dreieck.

Oder: Liegt der Punkt C eines Dreiecks ABC auf einem Halbkreis über der Strecke AB, dann hat das Dreieck bei C immer einen rechten Winkel.

Auch die Umkehrung des Satzes ist korrekt: Der Mittelpunkt des Umkreises eines rechtwinkligen Dreiecks liegt immer in der Mitte der Hypotenuse, also der längsten Seite des Dreiecks, die dem rechten Winkel gegenüberliegt.

Oder: Hat das Dreieck ABC bei C einen rechten Winkel, so liegt C auf einem Kreis mit der Hypotenuse AB als Durchmesser.

Beweise[Bearbeiten | Quelltext bearbeiten]

Euklid leitet den Satz des Thales im dritten Band seiner Elemente mit Hilfe folgender Sätze, die ebenfalls Thales zugeschrieben werden und im ersten Band enthalten sind, her:[2]

  • In jedem gleichschenkligen Dreieck sind die Winkel an der Basis gleich.[3]
  • Die Winkelsumme im Dreieck ist 180°.
Halbkreis mit Dreieck und Mittelpunkt M

ABC sei ein Dreieck innerhalb eines Kreises mit [AB] als Kreisdurchmesser und dem Radius r. Dann ist der Mittelpunkt M der Strecke [AB] auch der Kreismittelpunkt. Die Streckenlängen [AM], [BM] und [CM] sind also gleich dem Radius r.

Die Strecke [CM] teilt das Dreieck ABC in zwei Dreiecke AMC und BCM auf, die gleichschenklig sind. Die Basiswinkel dieser Dreiecke, also die Winkel an der Grundseite [AC] bzw. [BC], sind daher jeweils gleich ( beziehungsweise in der Abbildung).

Die Winkelsumme im Dreieck ABC beträgt 180°:

Dividiert man diese Gleichung auf beiden Seiten durch 2, so ergibt sich

.

Damit ist gezeigt, dass der Winkel    mit Scheitel C ein rechter Winkel ist.

Die Umkehrung des Satzes von Thales lässt sich zurückführen auf die Aussage, dass die Diagonalen eines Rechtecks gleich lang sind und sich gegenseitig halbieren.

Einen weiteren Beweis findet man hier: Wikibooks: Beweisarchiv.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Konstruktion einer Kreistangente[Bearbeiten | Quelltext bearbeiten]

Eine wichtige Anwendung des Satzes von Thales ist u. a. die Konstruktion der beiden Tangenten an einen Kreis k durch einen außerhalb dieses Kreises gelegenen Punkt P.

Konstruktion der Kreistangenten

Gegeben sei der Radius r vom Kreis k mit seinem Mittelpunkt O sowie der Abstand des Punktes P von O. Vom Punkt T wissen wir nur, dass er auf der Kreislinie, irgendwo im ersten Viertel vom Kreis k, liegen muss. Würde man nur diese Bedingung berücksichtigen, könnte man unendlich viele Dreiecke OPT einzeichnen.

Da die obere durch P verlaufende Tangente t den Kreis k genau im Punkt T berührt, muss das Dreieck OPT einen rechten Winkel am Punkt T haben (Grundeigenschaft der Kreistangente), oder anders formuliert: Die Strecke [OT] muss senkrecht auf der Tangente t stehen.

Um ein Dreieck OPT zu finden, das auch rechtwinklig ist, ermitteln wir von der Strecke [OP] den Mittelpunkt H mithilfe der Mittelsenkrechten, zeichnen einen Kreis mit dem Radius [HO] um den Mittelpunkt H und machen uns das Prinzip des Thaleskreises zunutze: Alle Dreiecke mit der Grundseite [OP], deren dritter Eckpunkt auf dem Thaleskreis liegt, sind rechtwinklig. Dies gilt natürlich auch für das Dreieck OPT.

Der Berührpunkt T kann deshalb nur der Schnittpunkt des Kreises k mit dem hellgrauen Kreis sein. Durch Verbinden von P mit T erhält man nun die gesuchte Tangente t (in der Zeichnung rot).

Es existiert eine zweite, symmetrische Lösung in der unteren Hälfte des Kreises. Die Tangente t' (ebenfalls rot gezeichnet) berührt den Kreis ebenfalls, und zwar im Punkt T'.

Quadratur des Rechtecks[Bearbeiten | Quelltext bearbeiten]

Eine weitere Anwendung ist die Quadratur des Rechtecks.

Konstruktion reeller Quadratwurzeln[Bearbeiten | Quelltext bearbeiten]

Konstruktion von und mit Zirkel und Lineal

Mithilfe des Satzes des Thales lassen sich die Quadratwurzeln aus und aus konstruieren.

Setzt man und konstruiert einen Thaleskreis über der Seite , so ist die Höhe des rechtwinkligen Dreiecks ABC gleich der Quadratwurzel aus .
Setzt man und konstruiert einen Thaleskreis über der Seite , so ist die Seite des rechtwinkligen Dreiecks ABC gleich der Quadratwurzel aus .

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Satz des Thales – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Diogenes Laertius: Leben und Meinungen berühmter Philosophen. Erster Band, Buch I−VI; Verlag von Felix Meiner, Leipzig 1921, S. 12, Ziffer 24, abgerufen am 18. April 2017.
  2. Thomas Heath: A History of Greek Mathematics. Band 1: From Thales to Euclid. Dover Publications, New York 1981, ISBN 0-486-24073-8.
  3. Proklos. In: Euklid: Die Elemente. I,250,20