Schilfrohr

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Schilfrohr
Schilfrohr (Phragmites australis)

Schilfrohr (Phragmites australis)

Systematik
Commeliniden
Ordnung: Süßgrasartige (Poales)
Familie: Süßgräser (Poaceae)
Unterfamilie: Arundinoideae
Gattung: Schilfrohre (Phragmites)
Art: Schilfrohr
Wissenschaftlicher Name
Phragmites australis
(Cav.) Trin. ex Steud.

Das Schilfrohr (Phragmites australis), auch allgemein als Schilf bezeichnet, ist eine Pflanzenart aus der Gattung Schilfrohre (Phragmites) innerhalb der Familie der Süßgräser (Poaceae). Sie ist weltweit verbreitet und manche Autoren unterscheiden drei Unterarten, die alle auch in Europa vorkommen.[1]

Beschreibung und Ökologie[Bearbeiten | Quelltext bearbeiten]

Weißer Haarkranz am Blattansatz (Unterscheidungsmerkmal vom ähnlichen Rohrglanzgras)
Illustration
Blütenstand
Die Laubblätter weisen ein bis zwei Zick-Zack-Querfalten („Eselsbiss“) auf.
Fruchtstand

Vegetative Merkmale[Bearbeiten | Quelltext bearbeiten]

Das Schilfrohr ist ein Rhizom-Geophyt und eine Sumpfpflanze. Die Nominatform, Phragmites australis subsp. australis, erreicht Wuchshöhen von maximal 4 Metern. In der Hauptwachstumsperiode des Schilfrohrs verlängern sich die Rhizome an der Spitze täglich um bis zu 3 Zentimeter. Die ältesten Rhizomteile sterben jeweils ab (Wurzelkriech- und Verlandungspionier).

Die Laubblätter sind in Blattscheide und Blattspreite gegliedert. Statt des Blatthäutchens (Ligula) ist ein Haarkranz vorhanden. Die Abflachung der zunächst wie die Blattscheide röhrigen Blattspreite erfolgt durch ein Gelenk.

Generative Merkmale[Bearbeiten | Quelltext bearbeiten]

Die Blütezeit reicht von Juli bis September. Das Schilfrohr ist ein Rispengras. Der rispige Blütenstand kann bis zu 50 Zentimeter lang werden. Phragmites australis ist windblütig vom „langstaubfädigen Typ“. Die Blütenährchen enthalten am Grunde männliche, darüber zwittrige Blüten.

Die Ährchenachse der Fruchtstände hat lange, abstehende Haare. Die winzigen Fruchtährchen verbreiten sich als Schirmchenflieger. Auch eine Schwimmausbreitung und eine Wasserhaftausbreitung ist möglich. Die Früchte sind frühestens im Dezember reif. Der Fruchtansatz ist von Jahr zu Jahr unterschiedlich; er ist auch vom Standort abhängig. Die Früchte sind Lichtkeimer, die Keimungsrate liegt circa bei 80 Prozent. Die Keimfähigkeit bleibt ein bis vier Jahre erhalten.

Die Benetzbarkeit der Blattoberfläche ist gering. Wasser perlt in Tropfen ab, wie es auch bei Lotosblumen beobachtet werden kann, und nimmt dabei auf der Oberfläche anhaftende Schmutzpartikel mit (Lotuseffekt).[2]

Die Chromosomenzahl beträgt 2n = 48, aber auch 36, 72, 84 oder 96.[3]

Schilfrohr im Frühsommer
Bis zu 4 Meter hoher Schilfrohrgürtel an einem See
Schilfrohr gesammelt für Reetdächer

Ökologie[Bearbeiten | Quelltext bearbeiten]

Die vegetative Vermehrung erfolgt in starkem Maße durch die bis zu 20 Meter langen Ausläufer sowie durch niederliegende, sich an den Knoten bewurzelnde Halme (Legehalme). Ganze Schilfbestände stellen oft nur eine einzelne Pflanze dar. Im Donaudelta fanden Fachleute Pflanzen, deren Alter auf etwa 8000 Jahre geschätzt wurde. Große Schilfbestände bieten zahlreichen Vögeln Schutz. Bei Nährstoffüberschuss verdrängt das Schilfrohr jedoch die übrige Ufervegetation. Bei allzu starkem Nährstoffeintrag bricht die Population allerdings auch wieder zusammen und wird beispielsweise von Eutrophierungszeigern wie dem Großen Wasserschwaden (Glyceria maxima) ersetzt. Sollen Schilfbestände aktiv vermehrt werden, müssen im Sommer Halmstücke mit ein bis drei Knoten abgeschnitten und in wenige Zentimeter tiefe Rinnen im Uferbereich eingegraben werden. Nach einigen Wochen bewurzeln sich die Stängelknoten, und es bilden sich Tochtersprosse aus.

Schilf bildet an Seen und Gräben natürliche Monokulturbestände. Sind Wasserversorgung und Nährstoffangebot günstig, verdrängt er durch seine Dominanz andere Wildkräuter und Gräser. In den oft riesige Flächen bedeckenden natürlichen Monokulturen des Schilfrohrs regulieren sich tierische Schädlinge selbst: Die Raupen der Schilfeule (Nonagria typhae) klettern fressend in den Internodien nach oben und zerstören dann den Vegetationskegel an der Spitze. Wegen der damit verbundenen Ausdünnung des Bestandes werden in den Folgejahren zahlreiche dünne Halme gebildet, so dass die Schilfeulenpopulation an diesen Stellen zugrunde geht.

Das Schilfrohr spielt bei der Verlandung von Gewässern eine große Rolle. Zwischen den dichten Halmen sammelt sich mit der Zeit viel Schlamm an und führt langsam zur Verlandung.

Systematik[Bearbeiten | Quelltext bearbeiten]

Die Erstveröffentlichung erfolgte 1799 unter dem Namen (Basionym) Arundo australis durch Antonio José Cavanilles in Ann, Hist. Nat. 1, Seite 100. Die Neukombination zu Phragmites australis (Cav.) Trin. ex Steud. wurde 1840 durch Carl Bernhard von Trinius in Ernst Gottlieb von Steudel: Nomenclator Botanicus. Editio secunda, 1 Seite 143 veröffentlicht. Weitere Synonyme für Phragmites australis (Cav.) Trin. ex Steud. sind: Arundo phragmites L., Cenchrus frutescens L., Phragmites communis Trin.[1]

Manche Autoren unterscheiden folgende Unterarten:

  • Phragmites australis (Cav.) Trin. ex Steud. subsp. australis: Sie erreicht Wuchshöhen von bis zu 4 Metern.
  • Phragmites australis subsp. isiacus (Arcang.) ined. (Syn.: Phragmites australis subsp. altissimus (Benth.) Clayton, Phragmites communis subsp. isiacus Arcang., Phragmites australis subsp. pseudodonax (Rabenh.) Rauschert)[1]: Sie erreicht Wuchshöhen (nach Conert 1987) von 6 bis 10 Meter hoch. Die Laubblätter sind bis 75 Zentimeter lang und 6 Zentimeter breit. Der rispige Blütenstand ist 30 bis 50 Zentimeter lang und dicht.[4]
  • Phragmites australis subsp. humilis (De Not.) Kerguélen: Sie erreicht Wuchshöhen von nur bis zu 1,2 Metern. Sie wird von manchen Autoren aber auch als Synonym zur Unterart Phragmites australis subsp. australis gestellt.[1]

Standorte[Bearbeiten | Quelltext bearbeiten]

Das Schilfrohr kommt häufig und beständig in der Röhrichtzone stehender und langsam fließender Gewässer bis zu einem Meter Wassertiefe vor, daneben auch in Quellmooren, auf Moorwiesen oder in Erlenbruch- und Weidenauenwäldern. Es liebt nicht zu kalte Schlick- und Schlammböden, die stickstoffhaltig und basenreich sein sollten und verhältnismäßig sauerstoffarm sein können. Reißende Hochwässer erträgt es nicht. Gemäß dem Ökologen Heinz Ellenberg ist die Art ein Wärmezeiger, ein Wechselwasserzeiger und eine Klassencharakterart der Röhrichte und Großseggen-Sümpfe (Phragmitetea australis). Es kommt aber auch in Pflanzengesellschaften der Klasse Scheuchzerio-Caricetea, der Ordnung Molinietalia und des Verbands Alnion vor.[3] Auf nicht überfluteten Standorten zeigt das Schilfrohr bewegtes Grundwasser an. Als Tiefwurzler ist es aus vernässten Äckern schwer zu vertreiben. Jedoch sterben verletzte Schilfrhizome bei langanhaltender Überflutung ab, wenn Wasser in das Durchlüftungsgewebe eindringt. Ähnlich verhindert ein hoch anstehendes Grundwasser ein Tiefenwachstum der Rhizome.

In den Allgäuer Alpen in Bayern steigt Schilfrohr zwischen Rohrmoos und der neuen Piesenalpe bis in Höhenlagen von 1260 Metern auf.[5]

Inhaltsstoffe[Bearbeiten | Quelltext bearbeiten]

Im Wurzelstock von Phragmites australis konnten die psychoaktiven Entheogene Dimethyltryptamin (DMT) und Bufotenin nachgewiesen werden.

Wirtschaftliche und industrielle Nutzung[Bearbeiten | Quelltext bearbeiten]

Nahrung[Bearbeiten | Quelltext bearbeiten]

Die jungen Sprossen werden in einigen Gebieten als Gemüse verwendet, wobei der typische Schilfgeschmack dieser Süßgrasart allerdings gewöhnungsbedürftig ist, auch Mehl zum Brotbacken kann man aus den getrockneten Wurzeln herstellen.

Gebrauchsgüter[Bearbeiten | Quelltext bearbeiten]

In der Antike war das aus einem Schilfstängel geschnittene Schreibrohr jahrhundertelang das wichtigste Schreibgerät. Etwa um das 6. Jh. wurde es in Europa von der Schreibfeder (aus einer Vogelfeder) verdrängt. Im islamischen Kulturkreis ist es bis heute für Kalligrafie in Gebrauch.

Dünne Matten aus Schilfrohr dienen zur Beschattung von Gewächshäusern, dickere als Wärmedämmung oder Windschutz. Die Art wird auch zur dekorativen Gestaltung von Uferpartien als Zierpflanze und zur Landgewinnung (z. B. im IJsselmeer) eingesetzt.

Die Herstellung der Matten erfolgte lange Jahrhunderte durch Weben. Die als Rohrweberei bezeichneten Manufakturen verwendeten ursprünglich das auf zugefrorenen Seen im Winter geschnittene Schilfrohr. Es wurde ein Jahr lang im Freien getrocknet, danach weitere Monate trocken und luftig gelagert und konnte erst danach zu dünnen Matten verwoben, meist von Hand geknotet, werden. Maschinell hergestellte Schilfmatten aus dem Baumarkt haben nur eine geringe Haltbarkeit von rund zwei Jahren, die handgefertigten dagegen halten mehrere Jahre. In der Zwischenzeit wird Miscanthus-Schilfrohr für Matten auf Feuchtflächen angebaut und mit Balkenmähern geerntet. Im Brandenburgischen Pritzerbe gibt es im Jahr 2020 die einzige verbliebene Schilfrohrweberei in Deutschland.[6]

Bauwesen[Bearbeiten | Quelltext bearbeiten]

Schilfrohr spielt vor allem eine Rolle als Naturbaustoff. Es dient in Form von Reet als Dachdeckmaterial und in Form von mehrschichtigen Schilfrohrplatten (20 und 50 mm, mit verzinktem Draht gebunden) oder einfachem Schilfrohr als Putzträger (Rabitzgeflecht) als Baumaterial im Lehmbau. Das Schilf nimmt keine Feuchtigkeit auf und verrottet daher nur langsam, es ist stabil und aufgrund seiner griffigen Oberflächenstruktur ein ausgezeichneter Putzgrund. Aufgrund seines Gehalts an Kieselsäure ist Schilf überdies brandhemmend. Weitere Bauelemente sind Dämmstoffe für die Außen- und Innendämmung, Schilfrohrgewebe oder Trennwände für den ökologischen Trockenbau.

Energiegewinnung[Bearbeiten | Quelltext bearbeiten]

Theoretisch ist auch eine energetische Nutzung von Schilfrohr beispielsweise für die Gewinnung von Biogas oder als lignocellulosereicher Rohstoff für die Herstellung von Cellulose-Ethanol möglich. Studien zeigten praktische Ausführung auf.[7][8]

In der Abwasserreinigung[Bearbeiten | Quelltext bearbeiten]

Pflanzenkläranlagen

Schilf ist sehr gut für die Bepflanzung einer Pflanzenkläranlage geeignet. Es wirkt durch die große Blattoberfläche und durch die Sauerstoffabgabe hohler, luftführender Stängelteile (Aerenchyme) unter Wasser gewässerreinigend (Sauerstoffeintrag: 5–12 g Sauerstoff pro m²/Tag). Der Sauerstoffeintrag fördert den mikrobiellen Abbau organischer Substanz durch aerophile Bakterien, die in großer Menge an den Wurzelhaaren des Schilfes siedeln.

Bodenfilter

Auch Retentionsbodenfilter werden häufig mit Schilf bepflanzt, um eine Leistungssteigerung zu erzielen. Der Schilfbewuchs soll durch sein permanentes Rhizomwachstum das Substrat lockern und so das Kolmationsrisiko senken. Eine intensive Durchwurzelung erhöht die Reinigungsleistung des Filters, da Sauerstoffeintrag und Wurzelexsudate eine Stimulation des mikrobiellen Schadstoffabbaus in der Rhizosphäre bewirken, gleichzeitig werden Nähr- (und z. T. Schadstoffe) der Bodenlösung entzogen.

Eine etablierte Schilffläche transpiriert 800–1000 l Wasser pro m² und Vegetationsperiode, wodurch sich die Sickerwasserbildung im Bodenfilter entsprechend reduziert. Dies begünstigt die Sorption und – durch die längere Kontaktzeit – auch Wurzelaufnahme und biologischen Abbau.

Die geschlossene Vegetationsdecke verbessert durch Beschattung und Isolation das bodennahe Mikroklima. Unter abgestorbenem Schilf finden Bakterien auch im Winter noch Temperaturen um +5 °C vor.

Schilfhalme wie auch kontinuierliche Streuzufuhr weitmaschiger Vegetationsreste bilden auf Bodenfiltern einen oberirdischen Raumfilter. Seine Sedimentationsoberflächen ergänzen die eigentliche Substratfiltration und schützen den Filter zusätzlich vor äußerer Kolmation.

Ein wesentlicher Nachteil des Einsatzes von Schilf in Bodenfiltern ist, dass Bodenfilter aufgrund der periodischen Zufuhr und kurzen Verweilzeiten des Wassers nicht zu den idealen Besiedlungsräumen des Schilfgrases gehören. Hohe Ausfälle beim Bewuchs auf den zeitweise trockenen Bodenfiltern sind die Folge. Dadurch ist eine optimale Reinigungs- und Filterwirkung in Bezug auf das zugeführte Abwasser durch die geschwächte Schilfvegetation nicht gewährleistet. Daneben ist Schilf empfindlich gegen mechanische Belastung, insbesondere gegen Knickbeanspruchung (Niederlegen des Bestands im Hauptströmungsbereich).

Schilf wird bei der Eingriffs-Kompensation nach § 8a Bundesnaturschutzgesetz von Naturschutzstellen positiv beurteilt. Im Gegensatz zu konventionellen Lösungen wurden schilfbepflanzte Filter selbst in Natur- und Landschaftsschutzgebieten zugelassen. Daneben können schilfbepflanzte Bodenfilter in Kombination mit Grünflächen und Grünpflastern zusätzliche Ausgleichsmaßnahmen für Neubaugebiete vermeiden helfen, was bei Wirtschaftlichkeitsbetrachtungen zunehmend Bedeutung erlangt.

Klärschlammvererdung

Schilf wird in Kläranlagen zur Nachbehandlung des Klärschlamms eingesetzt. Klärschlamm fällt in Kläranlagen als Abfallprodukt des Reinigungsprozesses an und muss entsorgt werden. Da er ganz überwiegend aus Wasser besteht (bis zu 98 Prozent), wird Klärschlamm entwässert, um die zu entsorgende Menge zu reduzieren. Neben mechanischen Verfahren hat sich dafür die Klärschlammvererdung mittels Schilfbeeten etabliert.

Dazu wird der Klärschlamm in großflächige Schilfbeete geleitet. Über die große Blattoberfläche verdunstet das Wasser und der Schlamm wird entwässert. Gleichzeitig bauen im Wurzelraum des Schilfs lebende Mikroorganismen den Schlamm biologisch um und es entsteht humushaltige Klärschlammerde. Der Entwässerungs- und Vererdungsprozess läuft kontinuierlich über 6 bis 12 Jahre, in denen sich das Vererdungsbeet nach und nach füllt. Danach wird die Klärschlammerde ausgebaggert und kann entweder thermisch entsorgt oder als Dünger in der Landwirtschaft verwertet werden.[9]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Klaus Bahlo, Gerd Wach: Naturnahe Abwasserreinigung. Planung und Bau von Pflanzenkläranlagen. 1. Auflage. Ökobuch, Staufen bei Freiburg 1992, ISBN 3-922964-52-4.
  • Arne Michael Ragossnig, O. Brandweiner: Schilf als biogener Ersatzbrennstoff zur Klinkerproduktion. Institut für nachhaltige Abfallwirtschaft und Entsorgungstechnik an der Montanuniversität Leoben – DepoTech, November 2006 (ask-eu.de).
  • Elfrune Wendelberger: Pflanzen der Feuchtgebiete – Gewässer, Moore, Auen. Büchergilde Gutenberg, München 1986, ISBN 3-7632-3265-6 (Originalausgabe: BLV, München/ Wien/ Zürich 1986, ISBN 3-405-12967-2).
  • P. G. Brunner: Bodenfilter zur Regenwasserbehandlung im Misch- und Trennsystem. Hrsg.: Landesanstalt für Umweltschutz Baden-Württemberg. 2., überarbeitete Auflage. Karlsruhe 2002 (lubw.baden-wuerttemberg.de (PDF; 2,5 MB)).
  • E. Bittmann: Das Schilf (Phragmites Communis Trin.) Und Seine Verwendung Im Wasserbau. In: Angewandte Pflanzensoziologie. Heft 7, 1953, S. 1–45, + Abbildungen. (Stolzenau/Weser, Arbeiten aus der Zentralstelle für Vegetationskartierung. Tüxen, Reinhold)
  • S. Björk, W. Granéli: Energy reeds and the environment. In: Ambio. 1978, 7, S. 150–156.
  • C.J. Hawke, D.V. José: Reedbed Management for commercial and wildlife interests. Publ. by the Royal Soc. for the Protection of Birds (RSPB). The Lodge, Sandy, 1996, ISBN 0-903138-81-6.
  • H. Koppitz, H. Kühl, R. Heinze, K. Geissler, A. Eitner, J.-G.Kohl: Vergleich der Entwicklung verschiedener auf einem wiedervernässten Niedermoor etablierten Schilfklone I. Saisonale Entwicklung der Bestandesstruktur, Halmmorphologie und Produktivität. In: Archiv für Naturschutz und Landschaftsforschung. Band 38, 1999, S. 145–166.
  • Retentionsbodenfilter. Handbuch für Planung, Bau und Betrieb. 1. Auflage. Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, Düsseldorf 2003, ISBN 3-9808617-1-6.
  • W. Wichtmann: Biomass for energy from rewetted peatlands. In: 2nd international baltic bioenergy conference: Use of bioenergy in the baltic sea region. Conference proceedings. FH Stralsund, 2006, S. 70–80.
  • W. Wichtmann: Restoration of degraded fen grasslands by rewetting and reed production. In: N. El Bassam, R. K. Behl, B. Prochnow (Hrsg.): Sustainable agriculture for food, energy and industry. James & James, London 1998, S. 479–483.
  • A. Schäfer, W. Wichtmann: Fen restoration and reed cultivation – first results of an interdisciplinary project – economic aspects. In: T. Malterer, K. Johnson, J. Stewart (Hrsg.): Peatland Restoration and Reclamation. IPS Symposium Duluth, Minnesota 1998, S. 244–249.
  • W. Wichtmann: Schilfanbau als Alternative zur Nutzungsauflassung von Niedermooren. In: Archiv für Naturschutz und Landschaftsforschung. Band 38, 1999, S. 97–110.
  • W. Wichtmann: Nutzung von Schilf (Phragmites australis). In: Archiv für Naturschutz und Landschaftsforschung. Vol. 38, 1999, S. 2–4, 217–232.
  • L. Rodewald-Rodescu: Das Schilfrohr. In: Die Binnengewässer. Band XXVII, Schweitzerbartsche Verlagsbuchhandlung, 1974. Mit Anhang.
  • S. M. Haslam: A book of reed: Phragmites australis (Cav.) Trin. ex Steudel, Phragmites communis Trin. Forrest, Tresaith, Ceredigion UK, 2010.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Commons: Schilfrohr – Album mit Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d Rafaël Govaerts (Hrsg.): Phragmites australis. In: World Checklist of Selected Plant Families (WCSP) – The Board of Trustees of the Royal Botanic Gardens, Kew. Abgerufen am 27. Juni 2020.
  2. Rolf Froböse: Wenn Frösche vom Himmel fallen. Die verrücktesten Naturphänomene. Wiley-VCH Verlag, Weinheim 2007, ISBN 978-3-527-31659-5, S. 170.
  3. a b Erich Oberdorfer: Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. 8. Auflage. Verlag Eugen Ulmer, Stuttgart 2001, ISBN 3-8001-3131-5, S. 237.
  4. Hans Joachim Conert: Phragmites australis. Seite 130–133. In: Gustav Hegi: Illustrierte Flora von Mitteleuropa. 3. Auflage, Band I, Teil 3, Verlag Paul Parey, Berlin, Hamburg, 1987, ISBN 3-489-52320-2.
  5. Erhard Dörr, Wolfgang Lippert: Flora des Allgäus und seiner Umgebung. Band 1, IHW, Eching 2001, ISBN 3-930167-50-6, S. 177.
  6. Stefanie Hildebrandt: Volles Rohr. In: Berliner Zeitung, 2. März 2020 (Printausgabe).
  7. Gras und Schilf gut geeignet zur energetischen Verwertung. 2013, abgerufen am 3. März 2020.
  8. Schilf und Gras preiswerte Alternativen für die Biogasanlage. 2013, abgerufen am 3. März 2020.
  9. S. Nielsen, J. D. Larsen: Operational strategy, economic and environmental performance of sludge treatment reed bed systems – based on 28 years of experience. In: Water Science and Technology. Band 74, Nr. 8, 2016, S. 1793–1799, doi:10.2166/wst.2016.295.