Sierpinski-Kurve

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Sierpiński-Kurve 1. Ordnung
Sierpiński-Kurven
1. und 2. Ordnung
Sierpiński-Kurven
1. bis 3. Ordnung

Die Sierpiński-Kurven sind eine rekursiv definierte Folge von stetigen geschlossenen fraktalen Kurven. Die Sierpiński-Kurve ist ein Beispiel für eine raumfüllende Kurve, die im Übergang das Einheitsquadrat vollständig ausfüllt. Sie wurden 1912 vom polnischen Mathematiker Wacław Sierpiński definiert.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Der Grenzwert der von der Sierpiński-Kurve umschlossenen Fläche ist (in euklidischer Metrik).
  • Die euklidische Länge der Kurve wächst exponentiell mit : .
  • Da die Kurve raumfüllend ist, hat sie im Grenzwert die Hausdorff-Dimension .

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Sierpinski-Kurve – Album mit Bildern, Videos und Audiodateien