Sollfahrttheorie

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Sollfahrt- oder McCready-Theorie dient der Maximierung der Reisegeschwindigkeit von Segelflugzeugen, Hängegleitern und Gleitschirmen. Da diese Luftfahrzeuge keinen Antrieb besitzen, sind sie für Flüge über weite Strecken darauf angewiesen, Aufwinde zu nutzen. Sie verweilen dabei einige Zeit im Aufwind, meist kreisend, um sich von ihm in die Höhe tragen zu lassen. Anschließend nutzen sie die Höhe, um den nächsten Teil der Flugstrecke im Gleitflug zurückzulegen.

Die Sollfahrttheorie hilft dem Piloten bei der Entscheidung, wie lange er den Aufwind nutzen sollte, um insgesamt möglichst schnell voran zu kommen. Außerdem gibt sie Hinweise, wie schnell im Auftrieb und im Gleitflug geflogen werden sollte. Dabei werden die Entfernung zur nächsten Thermik, ihre Stärke und die Eigenschaften des Luftfahrzeugs berücksichtigt.

Grundannahmen[Bearbeiten | Quelltext bearbeiten]

Modell eines Streckenfluges

Die Sollfahrttheorie bezieht sich auf ein Modell, welches rechts dargestellt ist. Das Flugzeug gleitet von einem Aufwind zum nächsten, legt eine Strecke zurück und verliert dabei an Höhe. Beim nächsten Aufwind angekommen, kreist es wieder zur Ausgangshöhe empor. Fliegt der Pilot zu schnell, so kommt er tiefer am Aufwind an und muss sehr lange steigen. Fliegt er zu langsam, kommt er zwar hoch an ist aber dabei sehr langsam. Zwischen diesen beiden Extremen liegt die optimale Vorfluggeschwindigkeit, bei der die Reisegeschwindigkeit maximal wird.

Die Sollfahrttheorie beruht auf folgenden Annahmen:

  1. Das Flugzeug steigt nur beim Kreisen im Aufwind, während des Gleitflugs sinkt es.
  2. Der nächste Aufwind wird immer erreicht.
  3. Der Pilot kann die Stärke des nächsten Aufwindes abschätzen.

Gerade die beiden letzten Annahmen sind in der Praxis nicht immer gegeben. Entspricht das Steigen des nächsten Aufwindes nicht der Erwartung, dann wird auch mit nicht optimaler Geschwindigkeit geflogen. Kann der nächste Aufwind nicht sicher erreicht werden, kann es unter Umständen sinnvoll sein, mit einer anderen Fahrt zu fliegen.


Mathematische Herleitung[Bearbeiten | Quelltext bearbeiten]

Die Reisegeschwindigkeit[Bearbeiten | Quelltext bearbeiten]

Fluggeschwindigkeit (Gleiten)
Sinkgeschwindigkeit (positive Zahl!)
Steiggeschwindigkeit im Aufwind
Reisegeschwindigkeit (Durchschnittsgeschwindigkeit)
Entfernung zum nächsten Aufwind
Höhe, die abgeglitten und wieder aufgestiegen wird
Zeit des Gleitens
Zeit des Steigens
Gesamtzeit
(1) Reisegeschwindigkeit = Entfernung / Zeit
(2) Gesamtzeit = Vorflugzeit + Steigzeit
(3) Höhe = Vorflugzeit * Sinken
(4) Höhe = Steigzeit * Steiggeschwindigkeit
(3) mit (4) gleichsetzen
(5) Nach Steigzeit auflösen
(6) Gleitzeit = Entfernung / Fluggeschwindigkeit
(7) (6) in (5) einsetzen
(6) und (7) in (2) einsetzen
(8) Gesamtzeit
(9) (8) in (1) einsetzen

Die Gleichung (9) gilt für jede geflogene Geschwindigkeit und jedes Flugzeugsinken.

Die optimale Vorfluggeschwindigkeit[Bearbeiten | Quelltext bearbeiten]

Fluggeschwindigkeit (Gleiten)
Sinkgeschwindigkeit (positive Zahl!)
(Erwartete) Steiggeschwindigkeit im Aufwind
Meteorologische Bewegung der Luftmasse (Steigen/Sinken) beim Gleiten
Zeit des Gleitens
Zeit des Steigens
Gesamtzeit
(1) Gesamtzeit = Vorflugzeit + Steigzeit
(2) Zeiten durch Quotienten aus Strecke und Geschwindigkeit ersetzen
(3) Der Höhenverlust ergibt sich aus der Summe Sinken (Meteorologisch + Flugzeug) durch Geschwindigkeit * Entfernung.
(3) in (2) einsetzten.
(4) Dies ist Gesamtzeit als Funktion der (Vorflug-) Geschwindigkeit. Um jetzt das Optimum zu ermitteln, differenziert man diese Gleichung nach der Geschwindigkeit und setzt diese gleich Null.
(5) Die Entfernung ist immer ungleich Null, also muss der geklammerte Ausdruck Null werden.
Dieses Ergebnis kann man auch als Verhältnisgleichung hinschreiben.
(6) Die sogenannte Sollfahrtgleichung.
Ermittlung der optimalen Vorfluggeschwindigkeit

Der Term kann als Punkt auf der Y-Achse aufgetragen werden. Die Optimale Geschwindigkeit erhält man durch das Anlegen einer Tangente an die Flugzeugpolare. Dies wird durch den Term auf der linken Seite von Gleichung (6) ausgedrückt. An der Y-Achse kann die ermittelte, optimale Fahrt abgelesen werden.

Die Praxis läuft etwa so ab: Der Pilot schätzt zunächst die Stärke des nächsten Aufwindes und stellt diese Größe an seinem Sollfahrtgeber (meist im Variometer integriert) ein. Während des Gleitfluges variiert er die Geschwindigkeit in Abhängigkeit von den meteorologischen Auf- und Abwinden () nach den Vorgaben des Sollfahrtgebers. Wenn die Luftmasse sinkt, fliegt der Pilot schneller; wenn sie steigt, langsamer. Durch diese Vorgehensweise optimiert er seine Geschwindigkeit und kommt insgesamt schneller zum Ziel. Der Segelflieger, Physiker und Ingenieur Paul MacCready erfand dazu einen drehbaren Ring, der auf das Variometer aufgesteckt wird. Man kann die optimale Geschwindigkeit damit direkt ablesen. Paul MacCready gewann im Jahr 1956 die Segelflug-Weltmeisterschaft[1].


Näherungsweise Berechnung der optimalen Vorfluggeschwindigkeit[Bearbeiten | Quelltext bearbeiten]

Die Geschwindigkeitspolare des Flugzeugs stellt den Zusammenhang zwischen Fluggeschwindigkeit und der Eigensinkgeschwindigkeit des Flugzeugs dar. Die Polare kann durch eine quadratische Funktion angenähert werden. Durch das Einsetzen der Näherungsgleichung in die Sollfahrtgleichung kann die optimale Fahrt einfach berechnet werden.

Fluggeschwindigkeit (Gleiten)
Sinkgeschwindigkeit (positive Zahl!)
(Erwartete) Steiggeschwindigkeit im Aufwind
Meteorologische Bewegung der Luftmasse (Steigen/Sinken) beim Gleiten
Koeffizienten der quadratischen Funktion, sie hängen vom Flugzeugtyp und der Flächenbelastung ab.
(1) Flugzeugpolare, genähert
(2) Die Näherungsgleichung differenziert nach der Geschwindigkeit.
(1) und (2) wurden in die Gleichung (6) des vorhergehenden Kapitels (Die optimale Vorfluggeschwindigkeit) eingefügt.
(3) Die optimale Fahrt (Sollfahrt) als Funktion der Koeffizienten a und c sowie der meteorologischen Luftbewegung während des Gleitens und der erwarteten Stärke des nächsten Aufwindes.

Quellen[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Liste der Segelflugweltmeister (Memento vom 6. Februar 2010 im Internet Archive) der FAI