Spinorbündel

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Ein Spinorbündel - auch Spinbündel[1] genannt - ist ein mathematisches Objekt aus der Differentialgeometrie beziehungsweise der globalen Analysis. Es ist eine spezielle Art eines Vektorbündels über einer Mannigfaltigkeit. Spinorbündel können nur für Spin-Mannigfaltigkeiten definiert werden. Dies sind spezielle riemannsche Mannigfaltigkeiten mit einer Spinstruktur auf dem Tangentialbündel. Ob ein Tangentialbündel mit einer Spinstruktur ausgestattet werden kann, kann durch die zweite Stiefel-Whitney-Klasse gemessen werden.

Der Raum der glatten Schnitte eines Spinorbündels wird auch als Raum der Spinoren oder Spinorfelder bezeichnet und dient als eine natürliche Definitionsmenge für den Dirac-Operator.

Spinstruktur[Bearbeiten | Quelltext bearbeiten]

Sei eine riemannsche Mannigfaltigkeit und ein orientiertes hermitesches Vektorbündel der Dimension . Mit wird die Spin-Gruppe von bezeichnet. Sie kann als eine zweiblättrige Überlagerung der orthogonalen Gruppe aufgefasst werden. Eine Spinstruktur auf ist ein -Hauptfaserbündel zusammen mit einer zweiblättrigen Überlagerung

des -Hauptfaserbündels , so dass für alle und alle gilt.[2]

Spin-Mannigfaltigkeit[Bearbeiten | Quelltext bearbeiten]

Eine Spin-Mannigfaltigkeit ist eine orientierbare riemannsche Mannigfaltigkeit, die eine Spinstruktur auf ihrem Tangentialbündel erlaubt.[3]

Da die Stiefel-Whitney-Klasse einer Mannigfaltigkeit definiert ist als die Stiefel-Whitney-Klasse ihres Tangentialbündels ist, bedeutet das, dass eine orientierbare riemannsche Mannigfaltigkeit genau dann eine Spinstruktur zulässt, wenn gilt. Dann werden die verschiedenen Spinstrukturen von den Elementen von bestimmt.[4]

Definition des Spinorbündels[Bearbeiten | Quelltext bearbeiten]

Sei eine riemannsche Mannigfaltigkeit mit gerader Dimension und einer Spinstruktur auf dem Tangentialbündel , also kurz eine Spin-Mannigfaltigkeit mit gerader Dimension. Sei die Darstellung der komplexen Clifford-Algebra (auch Spinor-Modul genannt). Die -Gruppe hat als Teilmenge von ebenfalls eine Darstellung .

Das Spinorbündel über der Mannigfaltigkeit ist definiert als das assoziierte komplexe Vektorbündel[5]

Hierbei bezeichnet das Faserprodukt von mit über . In diesem konkreten Fall bedeutet dies

für , und .

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Thomas Friedrich: Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg-Witten-Theorie. Friedr. Vieweg & Sohn, Braunschweig, 1997. ISBN 3-528-06926-0.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Thomas Friedrich: Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg-Witten-Theorie. Friedr. Vieweg & Sohn, Braunschweig, 1997. ISBN 3-528-06926-0, S. 467–468.
  2. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 80.
  3. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 96.
  4. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 96–97.
  5. Nicole Berline, Ezra Getzler, Michèle Vergne: Heat kernels and Dirac operators (= Grundlehren der mathematischen Wissenschaften 298). Berlin u. a. Springer 1992, ISBN 0-387-53340-0, S. 111.