Stichprobenkovarianz

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Stichprobenkovarianz oder empirische Kovarianz (oft auch einfach Kovarianz (von lateinisch con- = „mit-“ und Varianz von variare = „(ver)ändern, verschieden sein“)) ist in der Statistik eine nichtstandardisierte Maßzahl für den (linearen) Zusammenhang zweier statistischer Variablen. Die korrigierte Stichprobenkovarianz ist eine erwartungstreue Schätzung der Kovarianz einer Grundgesamtheit mittels einer Stichprobe.

Ist die Kovarianz positiv, dann gehen kleine Werte der einen Variable überwiegend einher mit kleinen Werten der anderen Variable und gleichfalls für große Werte. Für eine negative Kovarianz ist das genau umgekehrt.

Definition[Bearbeiten | Quelltext bearbeiten]

Ist eine Datenreihe (Stichprobe) zweier statistischer Variablen und , dann ist die Stichprobenkovarianz definiert als „durchschnittliches Abweichungsprodukt

mit den arithmetischen Mitteln und der Datenreihen und .

Die Stichprobenkovarianz misst die gemeinsame Streuung („Mitstreuung“) der Beobachtungsdaten einer Stichprobe. Dabei wird die mittlere Abweichung der Beobachtungsdaten von den Mittelwerten berechnet.

Oft wird auch die korrigierte Stichprobenkovarianz genutzt:

Konstruktion der Kovarianz[Bearbeiten | Quelltext bearbeiten]

Konstruktion der Kovarianz.

Der blaue Datenpunkt rechts oben in der Grafik hat einen positiven Beitrag zur Kovarianz:

.

Dies gilt für alle Datenpunkte im Quadranten I, mit und . Diese Betrachtungen kann man analog für die Datenpunkte in den anderen Quadranten fortsetzen:

  • Datenpunkte in Quadrant I: positiver Beitrag zur Kovarianz,
  • Datenpunkte in Quadrant II: negativer Beitrag zur Kovarianz,
  • Datenpunkte in Quadrant III: positiver Beitrag zur Kovarianz und
  • Datenpunkte in Quadrant IV: negativer Beitrag zur Kovarianz.

Gibt es einen "positiven" Zusammenhang zwischen den Datenpunkten, dann werden die meisten Datenpunkte (wie im rechten Beispiel) im Quadranten I und III liegen und viele positive Beiträge zur Kovarianz liefern. Die wenigen Datenpunkte in den Quadranten II und IV liefern zwar negative Beiträge, aber die positiven Beiträge werden überwiegen, d. h. die Kovarianz ist positiv. Gibt es einen "negativen" Zusammenhang, dann folgt mit der gleichen Argumentation, dass die Kovarianz negativ ist.

Korrigierte Stichprobenkovarianz[Bearbeiten | Quelltext bearbeiten]

Um aus einer Stichprobe eine Schätzung der unbekannten Kovarianz der Grundgesamtheit zu erhalten wird die korrigierte Stichprobenkovarianz genutzt:

Bei einer einfachen Zufallsstichprobe haben die Stichprobenvariablen und die Kovarianz . Unter Annahme einer zweidimensionalen Normalverteilung der Stichprobenvariablen und mit Hilfe der Maximum-Likelihood-Methode ergibt sich die Schätzfunktion

.

Es stellt sich jedoch heraus, dass der Erwartungswert ist, d. h. die Schätzfunktion ist nicht erwartungstreu (also verzerrt) für .

Die korrigierte Stichprobenkovarianz ist jedoch unverzerrt. Im Rahmen der induktiven Statistik wird daher immer die korrigierte Stichprobenkovarianz verwendet.

Stichprobenkovarianz vs. Korrigierte Stichprobenkovarianz[Bearbeiten | Quelltext bearbeiten]

Im Rahmen der deskriptiven Statistik stellt sich die Frage, ob man besser den Faktor oder verwenden soll. Allgemein hängt es vom Ziel der Analyse (bzw. den Eigenschaften der Stichprobe) ab.

  • Ist es das Ziel die Kovarianz einer Grundgesamtheit zu schätzen, dann ist wegen der Eigenschaft der Erwartungstreue , also der Faktor zu verwenden. Dafür sollte aber der Rückschluss auf die Grundgesamtheit möglich sein, z. B. die Stichprobe eine einfache Zufallsstichprobe sein.
  • Ist es das Ziel die Daten nur deskriptiv zu beschreiben, dann kann man oder verwenden. Dies ist z. B. der Fall, wenn der Rückschluss auf die Grundgesamtheit nicht gewollt oder möglich ist. Dann muss der Anwender entscheiden, welche Eigenschaft ihm wichtiger ist: der mögliche Rückschluss auf die Grundgesamtheit (mit ) oder die Interpretation als mittlere Abweichung von (mit ).

Bei großen Stichprobenumfängen ist der Unterschied zwischen und ohnehin klein, so dass die obige Überlegung nur bei kleinen Stichprobenumfängen angestellt werden muss.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Die folgenden Eigenschaften gelten sowohl für die Stichprobenkovarianz als auch für die korrigierte Stichprobenkovarianz.

Interpretation der Kovarianz[Bearbeiten | Quelltext bearbeiten]

  • Die Kovarianz ist positiv, wenn und tendenziell einen gleichsinnigen linearen Zusammenhang besitzen, d. h. hohe Werte von gehen mit hohen Werten von einher und niedrige mit niedrigen.
  • Die Kovarianz ist hingegen negativ, wenn und einen gegensinnigen linearen Zusammenhang aufweisen, d. h. hohe Werte der einen Variablen gehen mit niedrigen Werten der anderen Variablen einher.
  • Ist das Ergebnis 0, so besteht kein linearer Zusammenhang zwischen den beiden Variablen und (nichtlineare Beziehungen sind möglich).

Die Kovarianz gibt zwar die Richtung eines Zusammenhangs zwischen zwei Variablen an, über die Stärke des Zusammenhangs kann aber, aufgrund der Linearität der Kovarianz, keine Aussage getroffen werden. Um einen Zusammenhang vergleichbar zu machen, muss die Kovarianz normiert werden. Die gebräuchlichste Normierung mittels der Standardabweichung führt zum Korrelationskoeffizienten.

Beziehung zur Varianz[Bearbeiten | Quelltext bearbeiten]

Die Kovarianz ist eine Erweiterung der Varianz, denn es gilt

  • bzw.
  • .

Dabei ist und die empirischen Varianzen mit passendem Vorfaktor. Das heißt, die Varianz ist die Kovarianz einer Variable mit sich selbst.

Verschiebungssatz[Bearbeiten | Quelltext bearbeiten]

Der Verschiebungssatz liefert eine alternative Darstellung der Kovarianz

  • .

Diese Formeln ermöglichen in vielen Fällen eine einfachere Berechnung der Kovarianz. Bei numerischer Rechnung muss dabei allerdings auf unerwünschte Stellenauslöschung bei der Subtraktion großer Zahlen geachtet werden.

Symmetrie und Linearität[Bearbeiten | Quelltext bearbeiten]

Die Kovarianz ist linear und symmetrisch, d. h. es gilt:

Symmetrie
Beim Vertauschen der Rollen von und ergibt sich der gleiche Wert für die Kovarianz:
  • bzw.
Linearität
Wird eine der Variablen einer linearen Transformation unterzogen, z. B. , so gilt
  • bzw.
Wegen der Symmetrie ist die Kovarianz auch im zweiten Argument linear.

Die Linearität der Kovarianz hat zur Folge, dass die Kovarianz von der Maßeinheit der Variablen abhängt. So erhält man beispielsweise die zehnfache Kovarianz, wenn man anstatt die Variable betrachtet. Da diese Eigenschaft die absoluten Werte der Kovarianz schwer interpretierbar macht, betrachtet man häufig stattdessen den maßstabsunabhängigen Korrelationskoeffizienten.

Beispiele[Bearbeiten | Quelltext bearbeiten]

1.) Die folgende Grafik zeigt für 21 verschiedene Datensätze jeweils das Streudiagramm zusammen mit der Kovarianz und der Korrelation des Datensatzes. Die erste Reihe zeigt sieben Datensätze mit unterschiedlich starkem linearen Zusammenhang, wobei die Korrelation von +1 über 0 nach −1 geht. Da die Kovarianz ein nicht-standardisiertes Maß ist, geht sie von +2 auf Null bis auf −2. D.h., wenn es keinen linearen Zusammenhang gibt, dann ist die Kovarianz genauso Null wie die Korrelation. Das Vorzeichen der Kovarianz zeigt die Richtung des Zusammenhangs an; jedoch zeigt sie nicht die Stärke des Zusammenhangs.

Noch deutlicher wird es in der zweiten Zeile, wo alle sieben Datensätze einen perfekten linearen Zusammenhang haben. Doch die Kovarianz nimmt ab auf Null und wird dann negativ. Die Korrelation ist für diese Datensätze entweder +1 oder −1 (bzw. undefiniert). Die dritte Zeile zeigt schließlich, dass sowohl die Kovarianz als auch die Korrelation Null ist, obwohl ein deutlicher Zusammenhang zwischen beiden Variablen sichtbar ist. D.h. die Kovarianz misst nur den linearen Zusammenhang und nicht-lineare Zusammenhänge werden nicht erkannt.

Kovarianz '"`UNIQ--postMath-0000003F-QINU`"' und Korrelation '"`UNIQ--postMath-00000040-QINU`"' für unterschiedliche Datensätze.

2.) In einer Schule soll überprüft werden, ob es einen Zusammenhang gibt zwischen der Anzahl der unterrichteten Stunden der Lehrer am Tag und der Anzahl der getrunkenen Tassen Kaffee. Es wurden zehn Datenpaare erhoben und ausgewertet (so nicht durchgeführt, nur der Anschauung halber!):

Nummer 1 2 3 4 5 6 7 8 9 10
Anzahl Stunden () 5 6 8 4 6 6 5 7 5 4
Anzahl Tassen () 2 1 4 1 2 0 2 3 3 1

Die Kovarianz wird nun folgendermaßen berechnet:
a.) Zunächst wird das arithmetische Mittel beider Variablen ermittelt:

und

b.) Die Kovarianz wird nun berechnet über:

Da die Kovarianz größer als null ist, ist für diese Stichprobe ein positiver Zusammenhang zwischen der Anzahl der Unterrichtsstunden und der Anzahl der Tassen Kaffee ersichtlich. Ob dies auf die Grundgesamtheit, hier das Lehrerkollegium, generalisierbar ist, hängt von der Qualität der Stichprobe ab.

Siehe auch[Bearbeiten | Quelltext bearbeiten]