Strukturdynamik

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Strukturdynamik befasst sich mit den Bewegungen von Strukturen infolge zeitabhängiger Belastungen. Ein Beispiel für solche Belastungen ist Wind.[1] Die resultierenden Bewegungen sind insbesondere Schwingungen. Die untersuchten Strukturen können Maschinen, Maschinenelemente oder Bauwerke sein. Werden die Verzerrungen im elastischen Bereich linear angesetzt,[2] können auch die Eigenformen bestimmt werden. Die gängigsten Programme für die computerunterstützte Lösung strukturdynamischer Probleme sind NASTRAN, ANSYS, Abaqus und LS-DYNA.[3] In der Regel können diese Programme auch für nichtlineare Probleme z. B. im Fahrwerks- bzw. Karosseriebereich eingesetzt werden.

Anwendungsgebiete[Bearbeiten | Quelltext bearbeiten]

Das Anwendungsgebiet der Strukturdynamik ist groß. Die Strukturdynamik umfasst den Frequenzbereich zirka zwischen 0 und 1000 Hz.[4] So zählen u. a. folgende Bereiche zur Strukturdynamik:

Oft sind Strukturschwingungen unerwünscht, z. B. beim Dröhnen von Karosserieblechen oder bei den Schwingungen im Antriebsstrang von Fahrzeugen. Manchmal sind die Schwingungen aber erwünscht oder notwendig, z. B. bei Schwingförderern oder Mikrofonen. Die Strukturdynamik liefert Verfahren, mit denen diese Strukturen in der Theorie oder per Experiment analysiert werden können.

Angrenzende Gebiete, mit denen auch Schnittmengen zur Strukturdynamik bestehen, sind unter anderem:

  • Maschinenakustik: Sie unterscheidet sich von der Strukturdynamik insbesondere durch den betrachteten Frequenzbereich. Dieser liegt bei der Maschinenakustik zwischen 100 und 16000 Hz.[5]
  • Strukturmechanik: Diese beschäftigt sich mit der Dimensionierung von Strukturen bei statischer, dynamischer und thermischer Belastung.

Ein mögliches Unterscheidungsmerkmal zwischen Mehrkörperdynamik und Strukturdynamik liegt in der Betrachtung der verwendeten Freiheitsgrade. In der Strukturdynamik können durchaus tausende Freiheitsgrade vorhanden sein. Schiehlen und Eberhard machen in ihrem Buch „Technische Dynamik“ folgende Aussage: „... Die wesentlichen Anwendungsgebiete der Methode der finiten Elemente liegen in der Strukturdynamik, während die Methode der Mehrkörpersysteme in der Maschinendynamik bevorzugt eingesetzt wird ...[6]

Finite Elemente[Bearbeiten | Quelltext bearbeiten]

Bei Finite Elementen wird das System üblicherweise beschrieben durch:[7]

mit

  • : (zeitabhängiger) Knotenverschiebungsvektor
  • : Massenmatrix
  • : Physikalische Dämpfungsmatrix
  • : Steifigkeitsmatrix

Weblinks[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Strukturdynamik Band 1: Diskrete Systeme. Springer Berlin Heidelberg, Berlin, Heidelberg 1987, ISBN 978-3-662-10127-8.
  2. Daniel Pinyen Mok: Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. 2001, ISBN 978-3-00-007974-0. Online
  3. Knothe, Klaus, Liebich, Robert: Strukturdynamik: Diskrete Systeme und Kontinua. 2. Auflage. Springer, Berlin, Heidelberg 2012, ISBN 978-3-540-88977-9.
  4. Markert: Strukturdynamik. TU Darmstadt, 2010, Seite 3
  5. Markert: Strukturdynamik. TU Darmstadt, 2010, Seite 3
  6. Schiehlen, Eberhard: Technische Dynamik. 3. Auflage, Vieweg+Teubner, 2012, ISBN 978-3-8348-1492-0, Seite 186
  7. Jens Neumann: DISSERTATION: Anwendung von adaptiven Finite Element Algorithmen auf Probleme der Strukturdynamik. Hrsg.: Universität Fridericiana zu Karlsruhe TH. (d-nb.info).