Subdifferential

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das Subdifferential ist eine Verallgemeinerung des Gradienten auf nicht differenzierbare konvexe Funktionen. Das Subdifferential spielt eine wichtige Rolle in der konvexen Analysis sowie der konvexen Optimierung.

Definition[Bearbeiten | Quelltext bearbeiten]

Sei eine konvexe Funktion. Ein Vektor heißt Subgradient von an der Stelle , wenn für alle gilt[1]

,

wobei das Standardskalarprodukt bezeichnet.

Das Subdifferential ist die Menge aller Subgradienten von im Punkt .[2]

Anschauung[Bearbeiten | Quelltext bearbeiten]

Subgradienten einer konvexen Funktion

Intuitiv bedeutet diese Definition für , dass der Graph der Funktion überall über der Geraden liegt, die durch den Punkt geht und die Steigung besitzt:

Da die Normalengleichung von gerade

ist, ist die Normale an also

Im allgemeinen Fall liegt über der Hyperebenen, die durch den Fußpunkt und die Normale gegeben ist.

Wegen des Trennungssatzes ist das Subdifferential einer stetigen konvexen Funktion überall nicht leer.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Das Subdifferential der Funktion ist gegeben durch:

Beschränktheit[Bearbeiten | Quelltext bearbeiten]

Sei stetig und sei beschränkt. Dann ist die Menge beschränkt.

Beweis[Bearbeiten | Quelltext bearbeiten]

Sei stetig und sei beschränkt. Setze wobei . Angenommen ist nicht beschränkt, dann gibt es für ein und ein mit . Sei . Somit sind . Wir erhalten die Abschätzung

.

ist also kein Subgradient. Das ist ein Widerspruch.

Literatur[Bearbeiten | Quelltext bearbeiten]

  1. R. T. Rockafellar Convex analysis 1970., p.214
  2. R. T. Rockafellar Convex analysis 1970., p.215