Systemtheorie

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Systemtheorie (Begriffsklärung) aufgeführt.
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

Systemtheorie ist ein interdisziplinäres Erkenntnismodell, in dem Systeme zur Beschreibung und Erklärung unterschiedlich komplexer Phänomene herangezogen werden. Systemtheorien gehen häufig von kohärenten, sich selbst erhaltenden Einheiten, wie etwa „Gesellschaft“, „Justiz“ oder „Haushalt“, aus und erklären die beobachteten Phänomene durch die Verortung des Phänomens innerhalb der Einheit. Die Analyse von Strukturen und Funktionen soll häufig Vorhersagen über das Systemverhalten erlauben. Systemtheoretische Begriffe werden in den verschiedensten wissenschaftlichen Disziplinen angewandt.

Die Systemtheorie ist sowohl eine allgemeine und eigenständige Disziplin als auch ein weitverzweigter und heterogener Rahmen für einen interdisziplinären Diskurs, der den Begriff System als Grundkonzept führt. Es gibt folglich sowohl eine allgemeine „Systemtheorie“ als auch eine Vielzahl unterschiedlicher, zum Teil widersprüchlicher und konkurrierender Systemdefinitionen und -begriffe. Es hat sich heute jedoch eine relativ stabile Reihe an Begriffen und Theoremen herausgebildet, auf die sich der systemtheoretische Diskurs bezieht.

Chronologie


  • um 1970 Katastrophentheorie: Dieser Zweig der Mathematik beschreibt plötzliche Veränderungen, die sich aus kleinen Impulsen ergeben.

  • um 1980 Chaostheorie: Mathematische Theorie von nichtlinearen dynamischen Systemen, die Verzweigungen beschreibt, Attraktoren und chaotische Bewegungen.

Geschichte[Bearbeiten]

Der Begriff Allgemeine Systemtheorie geht auf den Biologen Ludwig von Bertalanffy zurück. Seine Arbeiten bilden zusammen mit der Kybernetik (Norbert Wiener, William Ross Ashby) die grundlegenden Überlegungen dieses Wissenschaftsansatzes. Weitere wichtige Theorien stammen von Humberto Maturana und Francisco Varela (Autopoiesis), Stuart Kauffman (Selbstorganisation) und Alfred Radcliffe-Brown (Strukturfunktionalismus) sowie Talcott Parsons (Strukturfunktionalismus oder Systemfunktionalismus) und Niklas Luhmann (soziologische Systemtheorie).

Kulturgeschichtlich geht der Systembegriff bis auf Johann Heinrich Lambert zurück und wurde unter anderem von Johann Gottfried Herder übernommen und ausgearbeitet. Dies vollzieht sich vor allem an der Frage, wie man lebende Organismen und deren Selbsterhaltung und -organisation verstehen kann.

Die moderne Systemtheorie beruht auf unabhängig voneinander entwickelten Ansätzen, die später synthetisiert und erweitert wurden: Der Begriff Systemtheorie bzw. Systemlehre stammt von Ludwig von Bertalanffy (vgl. „General Systems Theory“). Von Bertalanffy spricht von offenen Systemen und entwickelt den Begriff der organisierten Komplexität, der den dynamischen Austausch mit der Umwelt beschreiben soll. Erst mit der Ausformulierung des Informationsbegriffes ließ sich dieses Konzept jedoch weiter generalisieren. Bereits 1948 hatte Norbert Wiener mit „Cybernetics“ (Kybernetik) einen ebenfalls zentralen Ausdruck geprägt, der heute mit dem Systembegriff eng verbunden ist. Ein weiteres verwandtes Konzept ist die Tektologie Alexander Bogdanows.

Kybernetik[Bearbeiten]

Die Kybernetik behandelt operationell geschlossene Mechanismen. Sie wurde als Regelungs- und Kommunikationstheorie konzipiert. Der Fokus der Kybernetik liegt auf Regelung und Steuerung. Deshalb kommen in der Kybernetik als Systeme in erster Linie geregelte Mechanismen in Betracht. Die Regelung beruht immer auf Prozessen, die mit der mathematischen Systemtheorie der Technik beschrieben werden können. Bertalanffy hat sich gegen die Vermischung seiner Systemlehre und der Kybernetik ausgesprochen, weil er das mechanistische Denken der Kybernetik für die Beschreibung von Leben als nicht adäquat erachtete.

Generelle Erweiterungen der Kybernetik[Bearbeiten]

Als Systemtheorie 2. Ordnung bezeichnet man Systemtheorien, die in folgendem Sinne selbstbezüglich sind: Mit der jeweiligen Systemtheorie wird der Systemtheoretiker, der die Theorie macht, beschrieben. Der Kernbegriff ist deshalb die Beobachtung des Beobachters.

Als Autopoiesis bezeichnet Humberto Maturana sowohl seine Systemtheorie wie auch den wesentlichen Prozess, den er mit seiner Theorie beschreibt, nämlich das Leben. Maturana beschreibt, grob gesehen, das Gleiche wie von Bertalanffy in seiner Systemlehre, er argumentiert aber kybernetisch: er spricht von lebenden (autopoietischen) Maschinen, die operationell geschlossen sind.

Als Selbstorganisation bezeichnet man Prozesse, die wie die Autopoiese zu höheren strukturellen Ordnungen führen, ohne dass ein steuerndes Element erkennbar ist. Ein Beispiel ist der Laserstrahl, anhand dessen die Theorie von H. Haken auch entwickelt wurde .

Der Radikale Konstruktivismus wurde von Ernst von Glasersfeld entwickelt. Er hat dabei auf die Arbeiten von Jean Piaget zurückgegriffen. Die Denkweise von Piaget war konstruktivistisch und epistemologisch. Ernst von Glasersfeld argumentiert insbesondere auch mit der operationellen Geschlossenheit von Systemen.

Als System Dynamics bezeichnet man die Modellierung mit Regelkreisen. Bekannt gemacht hat das Verfahren Jay Wright Forrester durch das Weltmodell „World3“, anhand dessen in der „Club of Rome“-Publikation Limits to Growth (Die Grenzen des Wachstums, Dennis L. Meadows 1972) der globale Rohstoffverbrauch prognostiziert wurde.

Soziologische Systemtheorie[Bearbeiten]

Die soziologische Systemtheorie versteht sich als eine Universaltheorie im Sinne eines umfassenden und kohärenten Theoriegebäudes für alle Formen von Sozialität. Der soziologische Systembegriff geht auf Talcott Parsons zurück. Parsons betrachtet dabei Handlungen als konstitutive Elemente sozialer Systeme. Er prägte den Begriff der strukturell-funktionalen Systemtheorie.

Niklas Luhmann erweitert die Theorie Parsons und verwendet nicht mehr den Handlungsbegriff, sondern den sehr viel allgemeineren Begriff der Operation – siehe Systemtheorie (Luhmann).

Theorie komplexer Systeme[Bearbeiten]

Die neueste Strömung ist die Theorie komplexer Systeme. Ein komplexes System ist dabei ein System, dessen Eigenschaften sich nicht vollständig aus den Eigenschaften der Komponenten des Systems erklären lassen. Komplexe Systeme bestehen aus einer Vielzahl von miteinander verbundenen und interagierenden Teilen, Entitäten oder Agenten.

Die Theorie der Komplexen adaptiven Systeme beruht vorwiegend auf den Arbeiten des Santa Fe Institute. Diese neue Komplexitätstheorie, die Emergenz, Anpassung, und Selbstorganisation beschreibt, basiert auf Agenten und Computersimulationen, die Multiagentensysteme (MAS) einschließen, die zu einem wichtigen Instrument bei der Erforschung von sozialen und komplexen Systemen wurden.

Verwandte Gebiete[Bearbeiten]

Diese vier Hauptrichtungen haben Vorläufer, Unterabteilungen, Entwicklungen, Anwendungen in den Fachdisziplinen.

Chaostheorie[Bearbeiten]

Die Chaosforschung beschäftigt sich mit bestimmten nichtlinearen dynamischen Systemen, die eine Reihe von Phänomenen aufweisen, die man Chaos (genauer: chaotisches Verhalten) nennt. Eines dieser Phänomene ist der Schmetterlingseffekt, der besagt, dass kleine Änderungen unerwartet große Effekte haben können. Chaotische Systeme sind zum Beispiel Wetter, Klima, Plattentektonik, turbulente Strömungen, Wirtschaftskreisläufe, Internet und das Bevölkerungswachstum.

Katastrophentheorie[Bearbeiten]

Die Katastrophentheorie ist ein Zweig der Mathematik, der sich mit den Verzweigungen von dynamischen Systemen beschäftigt und beschreibt plötzliche Veränderungen, die sich aus kleinen Veränderungen von Umständen ergeben.

Konnektionismus[Bearbeiten]

Der Konnektionismus versteht ein System als Wechselwirkungen vieler vernetzter einfacher Einheiten. Die meisten konnektionistischen Modelle beschreiben die Informationsverarbeitung in Neuronennetzen. Sie bilden eine Brücke zwischen biologischer Forschung und technischer Anwendung.

Modellierung[Bearbeiten]

Um Systeme in Modellen beschreiben zu können, spielen Bereiche aus Mathematik und Informatik eine Rolle. Wenn ein System quantitativ beschrieben werden kann und weitere Voraussetzungen erfüllt sind (insbesondere die Differenzierbarkeit der beschreibenden Funktionen), dann werden häufig Differentialgleichungssysteme für die mathematische Modellierung herangezogen. Fehlen diese Voraussetzungen, dann muss die Beschreibung auf einer abstrakteren Ebene erfolgen. Für eine formale Beschreibung mit begrifflichen Mitteln dient in der Mathematik die formale Begriffsanalyse, ein Teilgebiet der Ordnungstheorie. Auf Seite der Informatik beschäftigt sich die Ontologie (Informatik) damit, Systeme formal mit begrifflichen Mitteln zu beschreiben. Grundlagen dazu liegen auch in der philosophischen Ontologie.

Weitere[Bearbeiten]

Medizinische Kybernetik
Die Medizinische Kybernetik umfasst die Anwendung systemtheoretischer, nachrichtentheoretischer, konnektionistischer und entscheidungsanalytischer Konzepte für biomedizinische Forschung und klinische Medizin.
Medizinische Systemtheorie
Das Ziel der medizinischen Systemtheorie ist es, die komplexen Zusammenhänge des physischen Systems und deren spezifische vernetzte Funktionsweise besser zu verstehen. Dabei werden physiologische Dynamiken im gesunden und erkrankten Organismus identifiziert und systemtheoretisch modelliert.
Dialektische Systemtheorie
Die Dialektische Systemtheorie geht davon aus, dass der Begriff System, verstanden als ein strukturiertes Ganzes, für die Wissenschaft als konstitutiv verstanden werden muss. Als Gegenbegriff des Systems wird das Chaos gesetzt. Der so verstandene Systembegriff und die Leitunterscheidung System und Chaos werden vor allem bei Kant und Hegel formuliert.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

  • Norbert Wiener: Cybernetics or Control and Communication in the Animal and the Machine. Hermann Editions, Paris 1948.
  • Ludwig von Bertalanffy: Zu einer allgemeinen Systemlehre, Biologia Generalis. 195, MIT Press/Wiley & Sons, New York/Cambridge 1948, S. 114–129.
  • William Ross Ashby: Introduction to Cybernetics. 1956.
  • Ludwig von Bertalanffy: Allgemeine Systemtheorie. In: Deutsche Universitätszeitung. Nr. 12, 1957, S. 8–12.
  • Ludwig von Bertalanffy: General System Theory. New York 1976.
  • Georg Klaus, Wörterbuch der Kybernetik, Berlin (Dietz), Frankfurt (Fischer Taschenbuch, 1968)
  • Frank Becker, Elke Reinhardt-Becker: Systemtheorie. Eine Einführung für die Geschichts- und Kulturwissenschaften. Campus, Frankfurt am Main 2001, ISBN 3-593-36848-X.
  • Frank Becker (Hrsg.): Geschichte und Systemtheorie. Exemplarische Fallstudien (= Campus historische Studien, Band 37). Campus, Frankfurt am Main 2004, ISBN 3-593-37587-7.

Weblinks[Bearbeiten]