Thomson-Streuung
Thomson-Streuung (nach Joseph John Thomson) bezeichnet die Streuung von elektromagnetischen Wellen durch freie geladene Teilchen im Rahmen der Klassischen Elektrodynamik. Geladene Teilchen werden durch das elektrische Wechselfeld zu kohärenten harmonischen Schwingungen in der Polarisationsebene des elektrischen Feldes angeregt. Da diese Schwingung eine beschleunigte Bewegung ist, strahlen die Teilchen selber eine elektromagnetische Welle gleicher Frequenz und Polarisation ab (Dipolstrahlung). Man sagt, die Welle wird gestreut.
Die Thomsonsche Streuformel gilt auch in guter Näherung für die elastische Streuung von Photonen an geladenen Teilchen, wenn die Teilchen frei oder schwach gebunden sind, und die Energie der Photonen groß ist im Vergleich zur Bindungsenergie, aber noch klein im Vergleich zur Ruheenergie der Teilchen.
Abgrenzung von anderen Streuungen
[Bearbeiten | Quelltext bearbeiten]Thomson-Streuung entsteht, wenn die (Kreis-)Frequenz der einfallenden elektromagnetischen Welle viel höher ist als die Eigenfrequenz des Teilchens im Oszillatormodell. Andererseits muss die Energie der Photonen klein im Verhältnis zur Ruheenergie des Teilchens sein.
Ist die Frequenz der Welle deutlich kleiner als die Eigenfrequenz, zum Beispiel bei stark gebundenen Elektronen, wird die gesamte Atomhülle gegenüber dem Atomkern zu Schwingungen angeregt, und es tritt Rayleigh-Streuung auf. Bei Photonenenergien in der Größenordnung der Ruheenergie des Elektrons oder größer erfolgt Compton-Streuung.
Wirkungsquerschnitt
[Bearbeiten | Quelltext bearbeiten]Der differentielle, nicht über die Polarisation der einfallenden Strahlung gemittelte Thomson-Wirkungsquerschnitt[1] lautet
wobei der Winkel zwischen Polarisationsvektor und Streuebene und der Streuwinkel ist. Die Größe ist der klassische Elektronenradius. Durch andere Naturkonstanten ausgedrückt ist
mit
- der elektrischen Feldkonstante
- der Elektronen- bzw. Elementarladung
- der Elektronenmasse
- der Lichtgeschwindigkeit .
Der von der Polarisationsrichtung abhängige Term heißt Polarisationsfaktor. Er ist ein Korrekturterm im Vergleich zur Streuung eines punktförmigen Teilchens an einem Objekt mit Radius und führt zu einer Winkelabhängigkeit des Thomson-Streuquerschnitts, sofern das Licht nicht orthogonal zur Streuebene polarisiert ist. Nach einer Mittelung über die Polarisationsrichtungen (bei unpolarisiertem Licht) erhält man
Der totale Wirkungsquerschnitt ergibt sich aus Integration über den Raumwinkel (dabei spielt keine Rolle, ob vorher über die Polarisation gemittelt wurde) zu[2]
Anwendung
[Bearbeiten | Quelltext bearbeiten]In der Praxis nutzt man (bei nicht allzu kleinen Dichten) die Thomson-Streuung zur Bestimmung der Elektronendichte (Intensität der Streustrahlung) und der Elektronentemperatur (spektrale Verteilung der Streustrahlung, unter Annahme einer Maxwell-Verteilung der Geschwindigkeit).
Eine Anwendung der Thomson-Streuung sind z. B. Messungen der Dichte im Plasma von Fusionsreaktoren. Dabei werden aus mehreren aktiv gütegeschalteten Nd:YAG-Lasern (Wellenlänge 1064 nm) parallele Lichtstrahlen von unten ins Plasma eingestrahlt. Im rechten Winkel dazu werden über eine Optik die gestreuten Lichtteilchen über Monochromatoren gemessen. Es kommt dabei zu einer Verschiebung um bis zu 700 nm. Durch die relativ geringe Pulsrate der Laser ist die zeitliche Auflösung begrenzt. Es lassen sich aber meist mehrere Laser unmittelbar hintereinander abfeuern. Damit ist in einem kurzen Zeitintervall die Auflösung höher.
Quantenfeldtheoretische Korrekturen
[Bearbeiten | Quelltext bearbeiten]Die Thomson-Streuung ist der klassische Grenzfall der Compton-Streuung, bei der die Teilcheneigenschaften (Welle-Teilchen-Dualismus) des Photons als Quant des elektromagnetischen Feldes berücksichtigt werden und die Streuung als Streuung zweier Teilchen modelliert wird. Dies führt zu einem Rückstoß, das heißt, es findet ein Impulsübertrag vom Photon auf das Elektron statt und die Energie der auslaufenden Strahlung ändert sich. Im Fall großer Wellenlängen ist dieser Effekt vernachlässigbar.
Diese halbklassische Darstellung erklärt jedoch nicht den differentiellen Wirkungsquerschnitt. Erst eine vollständige quantenfeldtheoretische Rechnung ergibt den Klein-Nishina-Wirkungsquerschnitt, dessen niederenergetischer Grenzfall der Thomson-Wirkungsquerschnitt ist. Die Korrekturen durch die Effekte der Quantenelektrodynamik erhält man durch Taylorentwicklung der Klein-Nishina-Formel für :
und
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Claude Amsler: Kern- und Teilchenphysik. vdf Hochschulverlag, 2007, ISBN 978-3-7281-3695-4, eingeschränkte Vorschau in der Google-Buchsuche.
- ↑ CODATA Recommended Values (2022). National Institute of Standards and Technology, abgerufen am 10. Juni 2024.