Trimethylamin

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Strukturformel
Strukturformel von Trimethylamin
Allgemeines
Name Trimethylamin
Andere Namen
  • N,N-Dimethylmethanamin
  • TMA (nicht eindeutig, siehe TMA)
  • NMe3
  • Fagin
Summenformel C3H9N
CAS-Nummer 75-50-3
PubChem 1146
Kurzbeschreibung

farbloses, widerwärtig fisch- oder tranartig riechendes Gas[1]

Eigenschaften
Molare Masse 59,11 g·mol−1
Aggregatzustand

gasförmig

Dichte
  • 0,65 g·cm−3 (Flüssigkeit am Siedepunkt)[2]
  • 2,58 g·l−1 (Gas bei 0 °C und 1013 hPa)[2]
Schmelzpunkt

−117,1 °C[2]

Siedepunkt

2,9 °C[2]

Dampfdruck

1887 hPa (20 °C)[2]

Löslichkeit

sehr leicht löslich in Wasser und Ethanol[1]

Dipolmoment

0,612(3) D[3] (2,0 · 10−30 C · m)

Brechungsindex

1,3631 (0 °C)[4]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [5]
02 – Leicht-/Hochentzündlich 04 – Gasflasche 05 – Ätzend 07 – Achtung

Gefahr

H- und P-Sätze H: 220​‐​280​‐​332​‐​315​‐​318​‐​335
P: 210​‐​261​‐​280​‐​305+351+338​‐​410+403 [2]
EU-Gefahrstoffkennzeichnung [6] aus EU-Verordnung (EG) 1272/2008 (CLP) [7]
Hochentzündlich Gesundheitsschädlich
Hoch-
entzündlich
Gesundheits-
schädlich
(F+) (Xn)
R- und S-Sätze R: 12​‐​20​‐​37/38​‐​41
S: (2)​‐​16​‐​26​‐​39
MAK

DFG/Schweiz: 2 ml·m−3 bzw. 4,9 mg·m−3[2][8]

Thermodynamische Eigenschaften
ΔHf0

−23,6 kJ/mol[9]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Trimethylamin ist ein farbloses brennbares Gas mit schon in starker Verdünnung intensivem fischartigen Geruch; in höheren Konzentrationen erinnert er stärker an den des chemisch nahe verwandten Ammoniaks. Es ist stark hygroskopisch, löst sich gut in Wasser und bildet darin eine recht starke Base. Es kommt als 40-prozentige wässrige Lösung, 33-prozentige Lösung in Ethanol und als druckverflüssigtes Gas in den Handel.

Gewinnung und Darstellung[Bearbeiten | Quelltext bearbeiten]

Die großtechnische Herstellung von Trimethylamin erfolgt durch die Umsetzung von Methanol und Ammoniak bei Temperaturen von 370 bis 430 °C und Drücken von 20 bis 30 bar. Die Reaktion wird in der Gasphase an sauren Heterogenkatalysatoren auf der Basis von Silicium-Aluminium-Oxiden durchgeführt. Als Reaktionsprodukte entstehen neben Trimethylamin und Wasser noch Methylamin CH3NH2 und Dimethylamin (CH3)2NH:

Die Reinigung und Aufarbeitung des Reaktionsgemisches erfolgt durch mehrstufige Destillation unter Druck.

Mit reaktiveren Methylierungsmitteln wie Methyliodid oder Dimethylsulfat kann Ammoniak bei niedrigen Temperaturen methyliert werden. Allerdings erhält man auch hiermit Gemische der möglichen Methylierungsstufen einschließlich des quartären Tetramethylammoniumions.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Physikalische Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Bei Raumtemperatur ist Trimethylamin ein farbloses Gas. Es lässt sich durch Abkühlen oder Druckerhöhung verflüssigen. Trimethylamin ist gut löslich in Wasser und aliphatischen Alkoholen wie z.B. Methanol. Es hat einen unangenehmen, fisch- bzw. tran- bis ammoniakartigen Geruch, der schon bei Konzentrationen von 0,0005 bis 4,2 mg/m³ wahrnehmbar ist.

Chemische Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Trimethylamin löst sich sehr leicht in Wasser, die Lösung reagiert als Base. Das Molekül dissoziiert in wässriger Lösung nach:

Der höhere pKs-Wert (9,81) gegenüber z.B. Ammoniak (9,25) erklärt sich aus dem +I-Effekt der drei Methylgruppen. Die dennoch schwächere Basizität als die "Zwischenglieder" Methyl- und Dimethylamin (pKs 10,66 bzw. 10,73) lässt sich aus der sterischen Behinderung des freien Elektronenpaares am Stickstoffatom, das für die Basizität verantwortlich ist, erklären.

Trimethylamin ist, wie alle Amine, eine schwache Base. Mit Säuren bildet es ionisch aufgebaute Salze, aus denen es mit stärkeren Basen wieder freigesetzt werden kann.

Verwendung[Bearbeiten | Quelltext bearbeiten]

Hauptfolgeprodukt von Trimethylamin ist Cholinchlorid, das durch Umsetzung von Ethylenoxid mit einer wässrigen Trimethylaminhydrochlorid-Salzlösung oder durch Umsetzung von Trimethylamin mit 2-Chlorethanol (Ethylenchlorhydrin) hergestellt werden kann. Außerdem findet Trimethylamin Anwendung bei der Herstellung von Wachstumsregulatoren, Ionentauscherharzen und als Katalysator in der organischen Synthese.

Vorkommen in der Natur[Bearbeiten | Quelltext bearbeiten]

Als Metabolit des Cholin-Stoffwechsels lässt sich Trimethylamin in vielen Organismen nachweisen. Höhere Konzentrationen entstehen beim mikrobiellen Abbau von Trimethylamin-N-oxid, das vor allem in Seefischen reichlich vorhanden ist[1], beispielsweise durch Bakterien der Gattungen Pseudomonas und Shewanella. Intensiver Trimethylamin-Geruch ("Heringslake") ist deshalb ein sicheres Indiz für mangelnde Frische. Trimethylamin entsteht weiterhin im Vaginalsekret und zersetztem männlichen Ejakulat. Unter den Ständerpilzen sind Brandpilze wie der Steinbrand (Tilletia caries) in der Lage, Trimethylamin zu produzieren und bei Befall von Weizen die Getreidekörner zu verderben. Schließlich produzieren einige Pflanzen Trimethylamin, beispielsweise Stinkender Gänsefuß (Chenopodium vulvaria) und Wald-Bingelkraut (Mercurialis perennis). Auch in den Blüten von Esskastanie, Weißdorn, Birne, Eberesche und weiteren verwandten Rosengewächsen und in Berberitzen findet sich das Amin. Bei den letztgenannten dient es vermutlich der Anlockung von Käfern als Bestäuber-Insekten (Cantharophilie). Schließlich ist Trimethylamin in Bucheckern enthalten. Abgeleitet vom Gattungsnamen der Rotbuche (Fagus) wird der Stoff deshalb auch als Fagin bezeichnet. Durch Röstung der Früchte wird die Giftwirkung abgebaut.

Trimethylamin wird auch im menschlichen Darm produziert, als Stoffwechselprodukt nach der Aufnahme von Phosphatidylcholin, Cholin und Carnitin, die sich besonders in Eiern undFleisch finden. Trimethylamin wird gut resorbiert und in der Leber durch Flavin-haltige Monooxygenasen (FMO3) zu Trimethylamin-N-oxid (TMAO) verstoffwechselt. Das Enzym FMO3 ist ein zentraler Regulator des Leber-Cholesterin-Stoffwechsels und seine Ausschaltung verhinderte bei insulin-resistenten übergewichtigen Mäusen die Entwicklung einer Hyperglykämie, einer Hyperlipidämie und einer Arteriosklerose. Der TMAO-Spiegel ist beim Menschen mit einem erhöhten Risiko für Herz-Kreislauf-Erkrankungen, besonders Herzinfarkt und Schlaganfall assoziiert. TMAO hat pro-arteriosklerotische Eigenschaften und steigert die Konzentration Makrophagen-spezifischen Cholesterins und die Bildung von Schaumzellen in der Gefäßwand. Darüber hinaus steigert TMAO die Plättchen-Aktivität. Bei Gabe von Antibiotika sank der TMAO-Blutspiegel. Die TMA-Bildung kann durch 3,3-Dimethyl-1-butanol gehemmt werden.[10]

Wirkung auf den menschlichen Körper[Bearbeiten | Quelltext bearbeiten]

Trimethylamin gilt als schwach giftig. Es wirkt reizend auf Augen und Atmungsorgane. Bei Geruchswahrnehmung kann schon eine gesundheitsgefährdende Konzentration vorliegen. Beim Verschlucken können die Wirkungen von Erbrechen mit Bauchschmerzen bis zu Verätzungen führen. Verätzungen können bis hin zur Zerstörung von Haut, Augen, Atem- und Verdauungswegen führen.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c Eintrag zu Trimethylamin. In: Römpp Online. Georg Thieme Verlag, abgerufen am 13. Mai 2014.
  2. a b c d e f g Eintrag zu Trimethylamin in der GESTIS-Stoffdatenbank des IFA, abgerufen am 1. Februar 2016 (JavaScript erforderlich).
  3. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Dipole Moments, S. 9-58.
  4. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Physical Constants of Organic Compounds, S. 3-504.
  5. Eintrag aus der CLP-Verordnung zu CAS-Nr. 75-50-3 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich).
  6. Für Stoffe ist seit dem 1. Dezember 2012, für Gemische seit dem 1. Juni 2015 nur noch die GHS-Gefahrstoffkennzeichnung gültig. Die EU-Gefahrstoffkennzeichnung ist daher nur noch auf Gebinden zulässig, welche vor diesen Daten in Verkehr gebracht wurden.
  7. Eintrag aus der CLP-Verordnung zu CAS-Nr. 75-50-3 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich).
  8. Schweizerische Unfallversicherungsanstalt (SUVA): Grenzwerte am Arbeitsplatz 2015 – MAK-Werte, BAT-Werte, Grenzwerte für physikalische Einwirkungen, abgerufen am 2. November 2015.
  9. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-25.
  10. Herbert Tilg: A Gut Feeling about Thrombosis New England Journal of Medicine 2016, Band 374, Ausgabe 25 vom 23. Juni 2016, Seiten 2494-2496, doi:10.1056/NEJMcibr1604458
 Commons: Trimethylamine – Sammlung von Bildern, Videos und Audiodateien