Tubuline

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Tubuline AB heterodimer, Bos taurus.

Tubuline sind Proteine, die in den Zellen von Eukaryoten vorkommen. Sie sind etwa 55 kDa schwer und 450 Aminosäuren lang. Es sind allein beim Menschen über hundert paraloge Isoformen bekannt, die in sechs Hauptgruppen (α, β, γ, δ, ε, ζ) eingeteilt werden. Die wichtigsten Formen des Tubulins, die α- und β-Tubuline, sind Hauptbestandteil der Mikrotubuli.[1]

Vorkommen[Bearbeiten | Quelltext bearbeiten]

Während Euraryoten, ob es sich nur um Einzeller, Pilze, Pflanzen oder Tiere handelt, einheitliches Tubulin haben (Genetische Ähnlichkeit: 90–95 %[2]), haben Prokaryoten erheblich unterschiedlichere tubulinähnliche Proteine (BtubA und BtubB[3][4]. Daneben gibt es TubZ, RepX, FtsZ), die teilweise nur zu 40 % in ihrer Gensequenz übereinstimmen. Trotzdem scheinen die aus diesen Homologen hergestellten Mikrotubuli der Bakterien im Wesentlichen dieselben Funktionen zu erfüllen wie die der Eukaryoten.[5]

Formen[Bearbeiten | Quelltext bearbeiten]

α- und β-Tubulin[Bearbeiten | Quelltext bearbeiten]

α-Tubulin (rot) in menschlichen Endothelzellen

α- und β-Tubuline sind kugelförmige Proteine, welche sich mit Hilfe einer nicht kovalenten Bindung zu einem Heterodimer verbinden können. Diese Heterodimere, welche sich dann zu den sogenannten Protofilamenten zusammenlagern, sind dann in der Lage, sich zu helikalen Hohlkörpern, den so genannten Mikrotubuli zusammenzulagern. Ursprungspunkt dieser rund 25 Nanometer[6] dicken Mikrotubuli sind die „microtubule organizing center“ (MTOC). Es sind 13 Protofilamente nötig, um eine Drehung der Helix zu erzeugen.

An den Enden eines Mikrotubulus befinden sich jeweils α-Tubulin bzw. β-Tubulin, das α-Tubulin-Ende ist negativ geladen, das β-Tubulin positiv[6]. α- und β-Tubulin sind in der Lage, GTP zu binden. Bei α-Tubulin der Protofilamente wird das GTP an der Dimergrenzfläche von einem Loop des β-Tubulin eingeschlossen und so vor der Hydrolyse geschützt. Das GTP des β-Tubulin wird allerdings kurz nach der Anlagerung an ein weiteres Protofilament zu GDP hydrolysiert. Dies beeinträchtigt die Stabilität der Mikrotubuli und führt dazu, dass die Mikrotubuli leichter am Plus-Ende depolymerisiert und somit abgebaut werden können. Beide Vorgänge (Polymerisation und Depolymerisation) laufen in der Zelle gleichzeitig ab und begründen damit die Dynamik des Mikrotubuli-Netzwerkes. Diese Eigenschaft der Mikrotubuli wird als dynamische Instabilität bezeichnet.

γ-Tubulin[Bearbeiten | Quelltext bearbeiten]

Gamma-Tubulin ist kein Baustein der Mikrotubuli. Es ist vielmehr an der Keimung neuer Mikrotubuli am Zentrosom und den Basalkörpern beteiligt. Gamma-Tubulin bildet dabei einen großen ringförmigen Proteinkomplex mit weiteren Proteinen. Dieser sogenannte „Gamma-Tubulin-Ring-Complex“ (gammaTuRC) kann die Polymerisation von alpha- und beta-Tubulin zur Bildung von Mikrotubuli bewirken.

δ- und ε-Tubulin[Bearbeiten | Quelltext bearbeiten]

δ- und ε- Tubulin findet man in den Zentriolen tierischer Zellen. Es wird vermutet, dass sie eine Rolle bei der Ausbildung der Mitosespindel spielen.

ζ-Tubulin[Bearbeiten | Quelltext bearbeiten]

ζ-Tubulin ist nur in Parasiten bekannt. Eine Teilsequenz wurde in Krallenfröschen Xenopus gefunden.[7]

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. INTERPRO-Eintrag zu Tubulinen allgemein
  2. Satyajit Sahu, Subrata Ghosh, Daisuke Fujita, Anirban Bandyopadhyay: Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. In: Scientific Reports. Band 4, Artikel 7303 (2014), 3. Dezember 2014, doi:10.1038/srep07303 (englisch).
  3. Kimberly K. Busiek, William Margolin: Bacterial Actin and Tubulin Homologs in Cell Growth and Division. In: Current biology, 2015 Mar 16; 25(6): R243–R254. doi:10.1016/j.cub.2015.01.030
  4. Martin Pilhofer, Mark S. Ladinsky, Alasdair W. McDowall, Giulio Petroni, Grant J. Jensen: Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton. In: Zeitschrift: PLOS Biology, Published: December 6, 2011, https://doi.org/10.1371/journal.pbio.1001213
  5. Contzen Pereira: Cytoskeleton and Consciousness: An Evolutionary Based Review. In: Zeitschrift: NeuroQuantology, June 2015, Volume 13, Issue 2, Page 232-239
  6. a b William J. Lennarz, M. Daniel Lane (Hrsg.): Encyclopedia of Biological Chemistry, Bd. 1, S. 372, ISBN 0-12-443710-9, 2004
  7. INTERPRO: ζ-Tubulin