Unterabtastung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Unter der Unterabtastung (englisch undersampling) wird in der Signalverarbeitung die Abtastung eines Signalverlaufes mit weniger als der doppelten Bandbreite verstanden. Unter bestimmten Voraussetzungen werden dabei nicht die Bedingungen des Nyquist-Shannon-Abtasttheorems verletzt. Die Unterabtastung kann in diesem Fall dazu dienen, ein hochfrequentes Signal wie bei der Funktion eines Mischers in einen Zwischenfrequenzbereich mit geringerer Frequenz zu versetzen. Sind die Voraussetzungen des Abtasttheorems nicht erfüllt, so tritt zufolge der Unterabtastung Aliasing und damit einhergehend Informationsverlust auf. Die Unterabtastung stellt das Gegenstück zur Überabtastung (oversampling) dar.

Verfahren[Bearbeiten | Quelltext bearbeiten]

Ein Signal in Bandpasslage weist allgemein eine Bandbreite von Signalanteilen auf, die symmetrisch um die Mittenfrequenz angeordnet sind. Um die Bedingungen des Nyquist-Shannon-Abtasttheorems nicht zu verletzen, darf das Signal außerhalb der Bandbreite keine Frequenzanteile aufweisen. Dies kann unter anderem durch Bandpassfilter vor der Unterabtastung gewährleistet werden.

Mit der Abtastfrequenz verschieben alle Abtastfrequenzen

die Mittenfrequenz des Bandpasssignals auf die wählbare Bildfrequenz im Basisband. Der Wert stellt den Faktor der Unterabtastung dar, mit größer werdendem werden die Abtastfrequenzen und somit nutzbaren Basisbandbreiten immer kleiner.

Die Bildfrequenz im Basisband wird üblicherweise bei symmetrischem Bandspektrum auf den Wert festgelegt. Bei unsymmetrischen Bandspektren wird gewählt.

Unterabtastung bei symmetrischem Bandspektrum[Bearbeiten | Quelltext bearbeiten]

Bei symmetrischen Bandspektrum, wie zum Beispiel der Amplitudenmodulation, steht die Information im Signal doppelt und symmetrisch um zur Verfügung. Typisch wird in diesem Fall gewählt, womit die Frequenzen im abgetasteten Signal durch

gegeben sind. Die redundante Bandhälfte wird dabei auf negative Frequenzen abgebildet, wodurch die Demodulation besonders einfach wird. Die minimale Abtastfrequenz muss größer als die Bandbreite sein, womit sich mit dieser Nebenbedingung dann der Faktor bestimmten lässt zu:

Damit entspricht die Unterabtastung bei dem symmetrischen Bandspektrum der Demodulation einer Amplitudenmodulation.

Unterabtastung bei asymmetrischem Bandspektrum[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Bandpassunterabtastung

Im Allgemeinen wird das Signal jedoch nur in eine niedrigere Zwischenfrequenzlage zur weiteren Verarbeitung verschoben (Funktion eines Mischers). Zur Erfüllung der Bedingungen des Nyquist-Shannon-Abtasttheorems wird gewählt, die Frequenzen im abgetasteten Signal sind dann:

Die minimale Abtastfrequenz muss größer als die doppelte Bandbreite sein, womit sich mit dieser Nebenbedingung dann der Faktor bestimmten lässt zu:

Nicht bandlimitierte Signale[Bearbeiten | Quelltext bearbeiten]

Auswirkung der Samplingfrequenz im Verhältnis zur Signalfrequenz

Bei Unterabtastung nicht entsprechend bandlimitierter Signale sind die im Nyquist-Shannon-Abtasttheorem genannten Voraussetzungen zur verlustfreien Informationsgewinnung nicht erfüllt. Aliasing führt zum Auftreten von Spiegelfrequenzanteilen, die Teile des Nutzsignals überlagern.

Die graue Schwingung sei das analoge Signal, das diskretisiert (z. B. digitalisiert) werden soll. Die blauen Zahlen rechts geben den Wertebereich an. Ein Sample, das in diesen Bereich fällt, erhält diese digitale Zahl zugeordnet (Quantisierung). Die senkrechten Linien (S1 bis S25) geben die Zeitpunkte an, zu denen abgetastet wird. Die roten × verdeutlichen, in welchen Wertebereich das jeweilige Sample fällt. Die rechteckige blaue Signalform repräsentiert das aus den digitalen Daten gewonnene Signal. (Ehe es einem Rekonstruktionsfilter zugeführt wird.)

In der Abbildung ist zu erkennen, dass ab Sample 20 (S20) die digitalisierten Werte die abgetastete Frequenz nicht mehr repräsentieren. Das Signal wird daher mit einer deutlich geringeren Frequenz und damit fehlerhaft rekonstruiert.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Fernando Puente León, Uwe Kiencke, Holger Jäkel: Signale und Systeme. 5. Auflage. Oldenbourg, 2011, ISBN 978-3-486-59748-6.