Verband (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Ein Verband ist in der Mathematik eine Struktur, die sowohl als Ordnungsstruktur als auch als algebraische Struktur vollständig beschrieben werden kann.
Als Ordnungsstruktur ist ein Verband dadurch gekennzeichnet, dass es zu je zwei Elementen a, b ein Supremum gibt, d. h. ein (eindeutig bestimmtes) kleinstes Element, das größer oder gleich a und b ist, und umgekehrt ein Infimum, ein größtes Element, das kleiner oder gleich a und b ist.
Als algebraische Struktur ist ein Verband dadurch gekennzeichnet, dass es zwei assoziative und kommutative Operationen gibt, für die die Absorptionsgesetze kennzeichnend sind:
für beliebige Elemente gilt \qquad u \sqcup (u \sqcap v) = u\qquad und \qquad u \sqcap (u \sqcup v) = u.

Für jede in der Verbandstheorie vorkommende algebraische Aussage gibt es eine direkte „Übersetzung“ in eine Ordnungsaussage und umgekehrt. Diese Übersetzung ist in den meisten Fällen auch anschaulich nachzuvollziehen.
Die Möglichkeit, Ergebnisse doppelt zu interpretieren und dadurch besser zu verstehen, macht die Untersuchung und die Verwendung von Aussagen aus der Verbandstheorie so interessant.

Obwohl diese doppelte Charakterisierung auf den ersten Blick sehr speziell aussieht, treten Verbände häufig auf:

Präzisierung[Bearbeiten]

Verbände als algebraische Strukturen[Bearbeiten]

Ein Verband (V, \sqcup, \sqcap) ist eine nichtleere Menge V mit zwei inneren binären Verknüpfungen \sqcup (Vereinigung, engl. join), und \sqcap (Durchschnitt, engl. meet), die folgenden Bedingungen für alle u, v, w aus V genügen:

Assoziativgesetze:

  • u \sqcup(v \sqcup w) = (u \sqcup v)\sqcup w
  • u \sqcap (v \sqcap w) = (u \sqcap v) \sqcap w;

Kommutativgesetze:

  • u \sqcup v = v \sqcup u
  • u \sqcap v = v \sqcap u;

Absorptionsgesetze:

  • u \sqcup (u \sqcap v) = u
  • u \sqcap (u \sqcup v) = u.

Aus diesen Bedingungen folgt die Idempotenz beider Verknüpfungen:

  • u \sqcup u = u, und
  • u \sqcap u = u.

V ist also bezüglich jeder einzelnen Verknüpfung ein Halbverband, d. h. eine kommutative Halbgruppe, in der jedes Element idempotent ist. Die Verknüpfungen treten bei den Absorptionsgesetzen in Wechselwirkung.

Verbände als Ordnungsstrukturen[Bearbeiten]

Man kann nach einer Idee von Leibniz auf V eine Halbordnung definieren durch:

  • v\leq w \quad\iff\quad v\sqcap w = v.

Mit dem Absorptionsgesetz erkennt man die Gültigkeit der Äquivalenzen

  • v\leq w \quad\iff\quad v\sqcap w=v\quad\iff\quad v\sqcup w=w.

Bezüglich dieser Halbordnung hat jede zweielementige Teilmenge {v, w} ein Supremum (obere Grenze) s = v \sqcup w und ein Infimum (untere Grenze) i = v \sqcap w. Dabei ist ein Element s ein Supremum von {v, w}, wenn gilt

  • v \leq s und w \leq s (d. h. s ist obere Schranke)
  • aus v \leq t und w \leq t folgt s \leq t (d. h. s ist die kleinste obere Schranke).

Analoges gilt für das Infimum i. Man kann per Induktion zeigen, dass jede nichtleere endliche Teilmenge ein Supremum und ein Infimum hat. Man schreibt allgemein das Supremum einer Menge M als U+2210.svg M, und das Infimum von M als U+220f.svg M, falls diese existieren.

Umgekehrt kann man für eine halbgeordnete Menge, bei der jede zweielementige Teilmenge ein Infimum und ein Supremum hat, definieren:

  • v\sqcap w = \inf\{v,w\}\qquad und \qquad v\sqcup w = \sup\{v,w\}.

Die beiden Verknüpfungen erfüllen dann die Verbandsaxiome, wie man leicht nachrechnet.

Hasse-Diagramme für einige Beispiele[Bearbeiten]

Hauptartikel: Hasse-Diagramm

Eine endliche halbgeordnete Menge (M, ≤) kann man durch einen gerichteten Graphen darstellen, den man Hasse-Diagramm nennt.

Wenn man den Graph so anordnet, dass alle Kanten „von unten nach oben“ gerichtet sind, dann kann man die Ordnung leicht sehen:

a < b ist dann gleichwertig mit: a ist durch einen (nach oben führenden) Kantenzug mit b verbunden.
Hasse-Diagramme für einige Verbände
Hasse diagram of powerset of 3.svg
Verband der Teilmengen von {x,y,z} (eine Boolesche Algebra)
Lattice of the divisibility of 60.svg
Verband der Teiler von 60
Lattice of partitions of an order 4 set.svg
Partitionen der Menge {1,2,3,4}, durch "gröber=größer" geordnet
Lattice M4.svg
Verband, der nicht distributiv, aber orthokomplementierbar ist
Nat num.svg
Die Menge der natürlichen Zahlen: geordnete Mengen sind Verbände
Diagramme, die keine Verbände darstellen
KeinVerband.svg
kein Verband, da c⊔d nicht existiert
NoLatticeDiagram.svg
kein Verband, da b⊔c nicht existiert (d und e sind zwar beide minimal größer, aber keins von beiden ist „kleinstes“ der größeren Elemente)

Spezielle Elemente in Verbänden[Bearbeiten]

Neutrale Elemente[Bearbeiten]

Falls die Verknüpfung \sqcup ein neutrales Element 0 hat,

0 \sqcup a = a,

dann ist es eindeutig bestimmt und man nennt es das Nullelement des Verbandes. Bzgl. \sqcap ist 0 absorbierend und bzgl. der Ordnung das kleinste Element:

0 \sqcap a = 0 und 0 = \quad U+220f.svg V.

Man nennt den Verband dann nach unten beschränkt.

Falls die Verknüpfung \sqcap ein neutrales Element 1 hat,

1 \sqcap a = a,

dann ist es eindeutig bestimmt und man nennt es das Einselement des Verbandes. Bzgl. \sqcup ist 1 absorbierend und bzgl. der Ordnung das größte Element:

1 \sqcup a = 1 und 1 = \quad U+2210.svg V.

Man nennt den Verband dann nach oben beschränkt.

Ein Verband heißt beschränkt, wenn er nach unten und nach oben beschränkt ist, also für beide Verknüpfungen ein neutrales Element hat.

Komplementäre Elemente[Bearbeiten]

Für ein gegebenes Element a eines beschränkten Verbandes nennt man ein Element b mit der Eigenschaft

  • a \sqcap b = 0 und a \sqcup b = 1

ein Komplement von a.

Ein beschränkter Verband, in dem jedes Element (mindestens) ein Komplement hat, heißt komplementärer Verband.

Im Allgemeinen kann es zu einem Elemente mehrere komplementäre Elemente geben.

Es gilt aber: In einem distributiven beschränkten Verband ist das Komplement eines Elements a im Falle seiner Existenz eindeutig bestimmt. Man schreibt es oft als ac (vor allem bei Teilmengenverbänden), ¬a (vor allem bei Anwendungen in der Logik) oder ā.

In jedem beschränkten Verband gilt

  • ¬0 = 1, ¬1 = 0.

In einem distributiven beschränkten Verband gilt: Falls a ein Komplement ¬a hat, dann hat auch ¬a ein Komplement, nämlich:

  • ¬(¬a) = a.

Spezielle Verbände[Bearbeiten]

Modulare Verbände[Bearbeiten]

N_5, der minimale nicht-modulare Verband

Ein Verband V heißt modular, falls gilt:

  • u\leq w \Longrightarrow u\sqcup(v\sqcap w) = (u\sqcup v)\sqcap w für alle u,v,w\in V.

Für einen Verband V sind wiederum jeweils äquivalent:

  • V ist modular.
  • u\geq w \Longrightarrow u\sqcap(v\sqcup w) = (u\sqcap v)\sqcup w für alle u,v,w\in V.
  • u\sqcup(v\sqcap(u\sqcup w)) = (u\sqcup v)\sqcap(u\sqcup w) für alle u,v,w\in V.
  • u\sqcap(v\sqcup(u\sqcap w)) = (u\sqcap v)\sqcup(u\sqcap w) für alle u,v,w\in V.

Ein nicht modularer Verband enthält immer den Verband N_5 als Unterverband.[1]

Distributive Verbände[Bearbeiten]

M_3, der minimale modulare, nicht-distributive Verband
Hauptartikel: Distributiver Verband

Im Folgenden meinen wir mit dem „Verband V“ stets den Verband (V, \sqcup, \sqcap).

Ein Verband V heißt distributiv, wenn die Verknüpfungen in doppelter Hinsicht distributiv sind:

  • u\sqcup(v\sqcap w) = (u\sqcup v)\sqcap(u\sqcup w) für alle u,v,w\in V und
  • u\sqcap(v\sqcup w) = (u\sqcap v)\sqcup(u\sqcap w) für alle u,v,w\in V.

Da diese beiden Aussagen zueinander äquivalent sind, genügt es, die Gültigkeit eines dieser beiden Distributivgesetze zu verlangen.

Jeder distributive Verband ist modular, aber nicht umgekehrt. Ein modularer Verband, der nicht distributiv ist, enthält immer den Verband M_3, den Verband der Untergruppen der Kleinschen Vierergruppe als Unterverband.[2]

Dies ergibt den „Test“: hat ein Verband weder einen Unterverband der Form N_5 noch einen der Form M_3, dann ist er distributiv.

Distributive Verbände sind auch anders zu charakterisieren, denn Birkhoff (1933) und Stone (1936) haben gezeigt:

Ein Verband ist genau dann distributiv, wenn er isomorph zu einem Mengenverband ist.[3]

Boolesche Algebren[Bearbeiten]

Hauptartikel: Boolesche Algebra und Heyting-Algebra

Ein distributiver komplementärer Verband heißt Boolesche Algebra oder Boolescher Verband;

Eine weitere Verallgemeinerung, bei der statt Komplementen nur relative Pseudokomplemente gefordert werden, heißt Heyting-Algebra.

Vollständige Verbände[Bearbeiten]

Ein Verband V heißt vollständig, wenn jede (auch die leere ebenso wie gegebenenfalls unendliche) Teilmenge ein Supremum und ein Infimum hat.

Es genügt, für jede Teilmenge M die Existenz des Supremums zu verlangen, denn es ist

  • U+220f.svg M = U+2210.svg \{ x \in V : (\forall\,y\in M: x \le y) \}.

Jeder vollständige Verband V ist beschränkt mit

  • 0 = U+220f.svg  V = U+2210.svg \emptyset\quad und \quad 1 = U+2210.svg V = U+220f.svg \emptyset.

Jeder endliche, nichtleere Verband V ist vollständig, also auch beschränkt.

Längenendliche Verbände[Bearbeiten]

Wenn jede bezüglich der Ordnung totalgeordnete Teilmenge (Kette) endlich ist, nennt man den Verband längenendlich.[4]
Für viele Beweise innerhalb der Verbandstheorie muss ein Verband nicht endlich sein, sondern es reicht, wenn er längenendlich ist.

Kompakte Elemente und algebraische Verbände[Bearbeiten]

Man nennt ein Element a eines vollständigen Verbandes V kompakt (nach der verwandten Eigenschaft kompakter Räume in der Topologie), wenn jede Teilmenge M von V mit

  • a\leq U+2210.svg M

eine endliche Teilmenge E enthält, für die gilt:

  • a\leq U+2210.svg E

Ein Verband V heißt algebraisch, wenn er vollständig ist und wenn jedes Element von V das Supremum von kompakten Elementen ist.

Dualität in Verbänden[Bearbeiten]

Die beiden Verbände sind dual zueinander (aber offensichtlich nicht isomorph).
Hauptartikel: Dualität (Verbandstheorie)

Vertauscht man in einem Verband V die beiden Verknüpfungen \sqcap und \sqcup, erhält man eine neue Struktur W. Man nennt W die duale Struktur.

Ersetzt man in einer beliebige Formel \varphi der Sprache der Verbandstheorie und setzt überall die beiden Zeichen „\sqcap“ und „\sqcup“ wechselseitig füreinander ein und ersetzt außerdem überall „0“ durch „1“ und umgekehrt, dann nennt man die entstandene Formel \widehat{\varphi} die duale Formel von \varphi.

Offensichtlich gelten in dem zu V dualen Verband W die dualen zu den in V gültigen Formeln. Da in der Definition eines Verbands zu jeder Formel auch die duale Formel vorkommt, folgt, dass W ebenfalls ein Verband ist, der als der zu V duale Verband bezeichnet wird.

Aus dieser Beobachtung folgt:

  • Gilt eine Formel in allen Verbänden, dann gilt auch ihre duale Formel in allen Verbänden.

Das Modularitätsgesetz ist selbstdual und die beiden Distributiv-Gesetze sind zueinander dual und die beiden Komplementärgesetze sind zueinander dual. Daher gilt entsprechend:

  • Gilt eine Formel in allen modularen oder in allen distributiven Verbänden oder in allen Booleschen Algebren, dann gilt auch die duale Formel in den entsprechenden Verbänden.

Unterstrukturen[Bearbeiten]

Unterverbände[Bearbeiten]

Ein Unterverband von V ist eine Teilmenge U, die mit den eingeschränkten Verknüpfungen von V ein Verband ist, d. h. es liegen

  • a \sqcup b und a \sqcap b\quad in U\quad für alle a,b aus U.

Teilverbände[Bearbeiten]

Ein Teilverband von V ist eine Teilmenge U, die ein Verband ist, d. h. U ist eine halbgeordnete Menge mit Supremum und Infimum für endliche Teilmengen.

Natürlich ist jeder Unterverband ein Teilverband, aber nicht umgekehrt.

Hier ist eine der wenigen Stellen, wo man den Unterschied in der Betrachtungsweise merkt: Für Verbände als Ordnungsstrukturen sind alle Teilverbände Unterstrukturen, für Verbände als algebraische Strukturen sind nur die Unterverbände Unterstrukturen.

Man geht weder bei Teilverbänden noch bei Unterverbänden davon aus, dass die neutralen Elemente in der Unterstruktur erhalten bleiben. Sonst muss man ausdrücklich von einem „Verband mit 0 und 1“ reden

Ideale und Filter[Bearbeiten]

Hauptartikel: Filter (Mathematik) und Ultrafilter

Ein Ideal  I ist ein Unterverband eines Verbandes  V, der zusätzlich folgende Bedingung erfüllt: sind  a \in I und  x \in V , dann ist  a\sqcap x \in I .
(Die Definition entspricht also formal der Definition, die man in einem Ring erwartet).

In der Ordnung von gilt aber  a\sqcap x \le a . Daher kann man die Definition auch so interpretieren:

Ein Ideal ist ein Unterverband, der zusammen mit einem Element a auch alle Elemente von V enthält, die kleiner als a sind.

Filter werden dual zu Idealen definiert: ein Filter ist ein Unterverband, der zusammen mit einem Element a auch alle Elemente von V enthält, die größer als a sind.

Homomorphismen[Bearbeiten]

Zum Beispiel ist die hier dargestellte monotone Abbildung f zwischen den Verbänden V und W kein Homomorphismus, da f(b \sqcup c) = n, aber f(b) \sqcup f(c) = m. Außerdem ist aus demselben Grund das Bild f(V) = \{j,k,l,n\} zwar ein Verband (mit k \sqcup l = n), aber kein Unterverband von W.

Sind (V,\sqcup,\sqcap) und (W,\sqcup,\sqcap) zwei Verbände und f\colon\, V \to W eine Funktion, sodass für alle a, b aus V gilt

  • f(a\sqcup b) = f(a)\sqcup f(b),
  • f(a\sqcap b) = f(a)\sqcap f(b),

dann heißt f Verbandshomomorphismus. Ist f zusätzlich bijektiv, dann heißt f (Verbands-)Isomorphismus und die Verbände V und W sind isomorph.

Falls (V,\sqcup,\sqcap) und (W,\sqcup,\sqcap) vollständig sind und f\colon\, V \to W sogar

  • f(U+2210.svg  T) = U+2210.svg  \{f(a) \mid a \in T\},
  • f(U+220f.svg T) = U+220f.svg \{f(a) \mid a \in T\}

für alle T \subseteq V erfüllt, nennt man f einen vollständigen Verbandshomomorphismus. Jeder vollständige Verbandshomomorphismus ist offensichtlich auch ein Verbandshomomorphismus.

Die Klasse aller Verbände bildet mit diesen Homomorphismen jeweils eine Kategorie.

Ein Verbandshomomorphismus ist gleichzeitig ein Ordnungshomomorphismus, d. h. eine isotone Abbildung:

  • aus a \leq b folgt f(a) \leq f(b).

Jedoch ist nicht jede isotone Abbildung zwischen Verbänden ein Verbandshomomorphismus.

In beschränkten Verbänden gilt: Die Menge der Elemente von V, die durch einen Verbandshomomorphismus auf das Nullelement des Bildes abgebildet werden, bilden ein Ideal von V und dual, die Menge der Elemente, die auf das Einselement abgebildet werden, bilden einen Filter.

Weitere Beispiele für Verbände[Bearbeiten]

Total geordnete Mengen[Bearbeiten]

Jede total geordnete Menge M ist ein distributiver Verband mit den Verknüpfungen Maximum und Minimum. Insbesondere gilt für alle a,b,c aus M:

  • max(a, min(b, c)) = min(max(a,b), max(a,c)),
  • min(a, max(b, c)) = max(min(a,b), min(a,c)).

Nur im Fall einer ein- oder zweielementigen Menge M ist der Verband komplementär.

Beispiele für die übrigen Eigenschaften:

  • Das abgeschlossene reelle Intervall [0, 1] und die erweiterte reelle Gerade (R mit ∞ und -∞) sind jeweils vollständige distributive Verbände (und damit beschränkt).
  • Das offene reelle Intervall (0, 1), die Mengen R, Q und Z sind jeweils unvollständige unbeschränkte distributive Verbände.
  • Das rationale Intervall [0, 1] \sqcap Q ist ein unvollständiger beschränkter distributiver Verband.
  • Die Menge N0 ist ein unvollständiger distributiver Verband mit Nullelement 0.

Teilerverbände[Bearbeiten]

Betrachtet man für eine natürliche Zahl n die Menge T aller Teiler von n, dann ist (T, ggT, kgV) ein vollständiger distributiver Verband mit Einselement n (neutralem Element für ggT) und Nullelement 1 (neutralem Element für kgV). Er heißt Teilerverband von n. Die Absorptionsgesetze und Distributivgesetze für ggT und kgV folgen dabei z. B. mit der Primfaktorzerlegung aus den Eigenschaften von max und min, man kann sie aber auch durch Teilbarkeitsbetrachtungen herleiten. Der Verband ist genau dann komplementär (und damit boolesch), wenn n quadratfrei ist, d. h. wenn n keine Quadratzahl \ne 1 als Teiler hat. Die Halbordnung auf T ist die Teiler-Relation:

  • ab genau dann, wenn a|b (genau dann, wenn ggT(a,b) = a).
Beispiele für Teilerverbände
T 2.svg
T2 ist Boolesche Algebra (und lineare Ordnung)
T 4.svg
T4 ist lineare Ordnung
T(6).svg
T6 ist eine Boolesche Algebra
T 12.svg
T12 ist nicht komplementär
T 30.svg
T30 ist eine Boolesche Algebra
(N0, kgV, ggT) ist beschränkt und distributiv, aber nicht komplementär. Jeder Teilerverband ist als Unterverband enthalten

Teilmengenverbände[Bearbeiten]

Für eine Menge M bildet die Potenzmenge \mathcal P(M) mit den Verknüpfungen Vereinigung \cup und Durchschnitt \cap einen algebraischen booleschen Verband mit Nullelement \emptyset (neutrales Element bezüglich \cup) und Einselement M (neutrales Element bezüglich \cap) sowie Komplement A^c = M\setminus A für alle A \in \mathcal P(M). Er heißt Potenzmengen- oder Teilmengenverband von M. Die Halbordnung auf (\mathcal P(M),\cup,\cap) ist die Mengeninklusion:

(Trägermengen von) Unterverbände(n) von (\mathcal P(M),\cup,\cap) heißen Mengenverbände (zwischen den Verbänden und ihren Trägermengen wird oft nicht unterschieden). Diese Verbände sind immer distributiv, müssen jedoch weder vollständig sein, noch neutrale Elemente oder Komplemente haben. (Ein Beispiel dafür ist der Verband der rechts-unendlichen reellen Intervalle [a,\infty) mit a aus \R, der isomorph zum Verband der reellen Zahlen ist.)

Unterstrukturenverbände von algebraischen Strukturen, Untergruppenverbände[Bearbeiten]

Für eine Gruppe (G, *) bildet die Menge A aller Untergruppen von G einen algebraischen (im Allgemeinen nicht modularen und damit auch nicht distributiven) Verband mit den Verknüpfungen „Erzeugnis der Vereinigung“ und „Durchschnitt“. Er heißt Untergruppenverband von G.

Beispielsweise ist der Untergruppenverband der kleinschen Vierergruppe, der gerade dem Verband M_3 entspricht, nicht-distributiv, aber modular.

Ebenso bilden

mit analogen Verknüpfungen einen modularen algebraischen Verband. Die Untergruppen einer beliebigen Gruppe und die Unterverbände eines beliebigen Verbands ergeben zwar immer einen algebraischen Verband, dieser muss aber nicht modular sein.

Ganz allgemein bilden die (algebraischen) Unterstrukturen einer algebraischen Struktur stets einen algebraischen Verband (wobei auch die leere Menge als Unterstruktur betrachtet wird, falls der mengentheoretische Durchschnitt – also das Infimum bezüglich der Mengeninklusion – von der Menge aller Unterstrukturen leer ist).

Insbesondere ist ein Verband genau dann algebraisch, wenn er isomorph ist zum Verband der (algebraischen) Unterstrukturen einer algebraischen Struktur (daher auch der Name „algebraischer Verband“).

Schränkt man die Menge der Untergruppen auf Obergruppen einer festen Untergruppe U ein, so bilden alle diese Zwischengruppen {V : UVG} auch einen beschränkten Verband. Analog dazu gibt es Verbände von Zwischenringen, Zwischenkörpern, Zwischenmoduln, Zwischenidealen.

Besonderes Interesse hat man am Untergruppenverband der Galoisgruppe einer galoisschen Körpererweiterung L/K, denn er ist isomorph zum dualen Zwischenkörperverband von L/K.

Literatur[Bearbeiten]

  •  Rudolf Berghammer: Ordnungen, Verbände und Relationen mit Anwendungen; 2. Auflage. Springer+Vieweg, Wiesbaden 2012, ISBN 978-3658006181.
  •  Garrett Birkhoff: Lattice Theory. 3rd Edition, AMS, Providence, RI 1973, ISBN 0-8218-1025-1.
  •  Hilda Draškovičová: Ordered Sets and Lattices. AMS, 1992, ISBN 0821831216.
  •  Hans Hermes: Einführung in die Verbandstheorie. 2te Auflage, Springer-Verlag, Berlin - Heidelberg 1967.
  •  Gábor Szász: Einführung in die Verbandstheorie. Akademiai Kiado, Budapest 1962.

Weblinks[Bearbeiten]

 Commons: Verband – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise und Anmerkungen[Bearbeiten]

  1. H.Gericke, Theorie der Verbände, Mannheim, ²1967,S 76 (Figur dazu auf S. 70)
  2. H.Gericke, Theorie der Verbände, Mannheim, ²1967,S 111
  3. G.Grätzer, Lattice Theory, 1971, S. 75
  4. Helmuth Gericke: Theorie der Verbände, Bibliographisches Institut, Mannheim 1963, §6.2