Ausdehnungskoeffizient

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Volumenausdehnungskoeffizient)
Wechseln zu: Navigation, Suche

Der Ausdehnungskoeffizient oder Wärmeausdehnungskoeffizient ist ein Kennwert, der das Verhalten eines Stoffes bezüglich Veränderungen seiner Abmessungen bei Temperaturveränderungen beschreibt – deswegen oft auch thermischer Ausdehnungskoeffizient genannt. Der hierfür verantwortliche Effekt ist die Wärmeausdehnung. Die Wärmeausdehnung ist abhängig vom verwendeten Stoff, es handelt sich also um eine stoffspezifische Materialkonstante. Da die Wärmeausdehnung bei vielen Stoffen nicht gleichmäßig über alle Temperaturbereiche erfolgt, ist auch der Wärmeausdehnungskoeffizient selbst temperaturabhängig und wird deshalb für eine bestimmte Bezugstemperatur oder einen bestimmten Temperaturbereich angegeben.

Es wird zwischen dem thermischen Längenausdehnungskoeffizienten α (auch linearer Wärmeausdehnungskoeffizient) und dem thermischen Raumausdehnungskoeffizienten γ (auch räumlicher Ausdehnungskoeffizient oder Volumenausdehnungskoeffizient oder kubischer Ausdehnungskoeffizient) unterschieden.

Längenausdehnungskoeffizient[Bearbeiten | Quelltext bearbeiten]

Der Längenausdehnungskoeffizient eines Festkörpers mit der Länge ist die Proportionalitätskonstante zwischen der Temperaturänderung und der relativen Längenänderung . Mit ihm wird demnach die relative Längenänderung bei einer Temperaturänderung beschrieben. Er ist eine stoffspezifische Größe, die die Einheit („pro Kelvin“ gesprochen) hat und über die folgende Gleichung definiert ist:

Die temperaturabhängige Länge eines Stabes kann über die Lösung dieser Differentialgleichung berechnet werden, sie lautet:

Bei einem von der Temperatur unabhängigen Ausdehnungskoeffizienten wird daraus zusammen mit der ursprünglichen Länge bei gleichmäßiger Erwärmung oder Abkühlung um die Temperaturdifferenz :

Für die meisten Anwendungen ist es ausreichend, folgende Näherung zu verwenden, bei der die Exponentialfunktion durch die ersten beiden Glieder ihrer Taylorreihe angenähert wurde:

Die Längenänderung in linearer Näherung lautet somit:

Bei anisotropen Festkörpern ist der Längenausdehnungskoeffizient ebenfalls richtungsabhängig. Dies ist insbesondere bei der Verwendung von Tabellenwerten aus der Literatur zu beachten.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Aluminium hat einen Wärmeausdehnungskoeffizient . Das bedeutet, dass sich ein ein Kilometer langes Aluminiumstück bei einer Temperaturerhöhung von einem Kelvin um 23,1 mm ausdehnt.

Wenn ein anderes Aluminiumstück 8 Meter lang ist und die Temperaturerhöhung 70 Kelvin beträgt, dann dehnt sich dieses Aluminiumstück um 1,3 Zentimeter aus, denn

Letzteres Beispiel beschreibt z. B. acht seitlich aneinandergeschraubte Solarmodule mit Aluminiumrahmen und deren ungefähren maximalen Temperaturunterschied zwischen Sommer (sonnenbestrahltes Aluminium) und Winter (Lufttemperatur in der Nacht). Man erkennt daran, dass die Wärmeausdehnung bei der Konstruktion der Befestigungs- und Rahmenbauteile berücksichtigt werden muss, z. B. durch flexible oder verschiebbare Befestigungselemente.

Raumausdehnungskoeffizient[Bearbeiten | Quelltext bearbeiten]

Der Raumausdehnungskoeffizient hat wie der Längenausdehnungskoeffizient die Einheit . Er gibt das Verhältnis zwischen der relativen Volumenzunahme und der Temperaturänderung eines Körpers an. Mathematisch ist er definiert durch:

wobei die den partiellen Ableitungen als Index nachgestellten Größen Druck und Teilchenzahl konstant zu halten sind. Die temperaturabhängige Lösung hierfür lautet analog zu oben:

Bei einem von der Temperatur unabhängigen Raumausdehnungskoeffizient ergibt sich zusammen mit :

Ebenso wie für den Längenausdehnungskoeffizienten kann hier die Linearisierung als Näherung für kleine Temperaturänderungen benutzt werden:

Mit einer Maxwell-Relation ist es möglich, den Raumausdehnungskoeffizienten mit der Entropie in Verbindung zu bringen:

Da die Masse wegen der Massenerhaltung temperaturunabhängig ist, ergibt sich der Raumausdehnungskoeffizient aus der Dichte in Abhängigkeit von der Temperatur:

Ist der Ausdehnungskoeffizient als Funktion der Temperatur bekannt, so ergibt sich die Dichte aus:

Hierbei ist eine beliebige Temperatur, z. B. , bei der die Dichte bekannt ist.

Eduard Grüneisen hat gezeigt, dass der Quotient zwischen dem thermischen Ausdehnungskoeffizienten und der spezifischen Wärmekapazität näherungsweise unabhängig von der Temperatur ist.

Im Allgemeinen ist der Wärmeausdehnungskoeffizient eine positive Größe. Wegen des Massenerhaltungssatzes geht daher bei den meisten Stoffen eine Temperaturerhöhung mit einer Verringerung der Dichte einher. Manche Stoffe, wie beispielsweise Wasser zwischen und , zeigen jedoch in bestimmten Temperaturbereichen das als Dichteanomalie bezeichnete Verhalten, bei dem ein negativer Ausdehnungskoeffizient beobachtet wird. Außerdem gibt es Materialien, wie zum Beispiel einige Arten von Glaskeramik, deren Wärmeausdehnungskoeffizient nahezu null ist.

Der Wärmeausdehnungskoeffizient kann auf empirischem Wege durch Messungen ermittelt werden und gilt nur für den Stoff und für den Temperaturbereich, an dem beziehungsweise in dem die Messung erfolgte.

Zusammenhang zwischen Längen- und Raumausdehnungskoeffizienten[Bearbeiten | Quelltext bearbeiten]

Für isotrope Festkörper gilt, dass sich die Längenänderung in allen drei Raumrichtungen gleich verhält. Das Volumen eines Quaders ist gegeben durch das Produkt seiner Kantenlängen . Das vollständige Differential des Volumens lautet dann:

Eingesetzt in die Definition des Raumausdehnungskoeffizienten ergibt sich:

Aufgrund der vorausgesetzten Isotropie sind die drei Terme auf der rechten Seite jeweils gleich dem Längenausdehnungskoeffizienten, es gilt also:

Für isotrope Festkörper kann also das Dreifache des Längenausdehnungskoeffizienten verwendet werden, um die Volumenausdehnung zu berechnen.

Ausdehnungskoeffizienten einiger Stoffe[Bearbeiten | Quelltext bearbeiten]

Feststoffe[Bearbeiten | Quelltext bearbeiten]

Längenausdehnungskoeffizient α einiger Feststoffe bei 20 °C
Bezeichnung α in 10−6 K−1
Aluminium 23,1[1]
Magnesium 24,8[1]
Beryllium 11,3[1]
Mangan 21,7[1]
Blei 28,9[1]
Nickel 13,4[1]
Chrom 4,9[1]
Platin 8,8[1]
Diamant 1,18[1]
Silber 18,9[1]
Eisen 11,8[1]
Silizium 2,6[1]
Germanium 5,8[1]
Titan 8,6[1]
Gold 14,2[1]
Wolfram 4,5[1]
Graphit 1,9…2,9[2]
Zink 30,2[1]
Invar 0,55…1,2[1]
Zinkcyanid −18,1[3]
Kochsalz 40[4]
Zinn 22,0[1]
Kupfer 16,5[1]
Zirconiumwolframat −8,7[3]

Für Feststoffe werden in der Regel Längenausdehnungskoeffizienten verwendet. Da viele Materialien isotrop sind, können diese, wie oben beschrieben, auch zur Beschreibung der Volumenausdehnung verwendet werden. Für anisotrope Stoffe gelten verschiedene Ausdehnungskoeffizienten für die unterschiedlichen Raumrichtungen. Starke Anisotropie zeigen einige Verbundwerkstoffe, wie das Naturprodukt Holz: Die Ausdehnung quer zur Faser ist etwa zehnmal größer als längs der Faser.[5] Ebenfalls stark anisotrop ist das Verhalten von Carbonfasern, welche in Faserrichtung sogar einen leicht negativen Ausdehnungskoeffizienten aufweisen. Mittels CFK ergibt sich damit die Möglichkeit, Bauteile herzustellen, die in gewünschten Vorzugsrichtungen bei Temperaturänderungen keine oder nur minimale Größenänderungen aufweisen.

Die Legierung Invar wurde speziell entwickelt, um einen kleinen Ausdehnungskoeffizienten zu erhalten. Durch kleine Abweichungen der Zusammensetzung schwankt der Ausdehnungskoeffizient für diesen Stoff relativ stark.

Kunststoffe (Polymere) sind von der Struktur und den Eigenschaften sehr vielfältig und bestehen meist aus einem Gemisch verschiedener reiner Stoffe. Der Ausdehnungskoeffizient schwankt entsprechend mit der tatsächlichen Zusammensetzung, ist aber in der Regel deutlich höher als für Metalle, das heißt größer als 50 · 10−6 K−1.[2] Unterhalb ihres Glasübergangs haben Polymere, bzw. allgemein amorphe Feststoffe, in der Regel einen deutlich kleineren Ausdehnungskoeffizienten als oberhalb.

Flüssigkeiten[Bearbeiten | Quelltext bearbeiten]

Raumausdehnungskoeffizient γ einiger Flüssigkeiten bei 20 °C
Bezeichnung γ in 10−3 K−1
Aceton 1,46[1]
Mineralöl, Hydrauliköl 0,7
Benzol (bei 25 °C) 1,14[1]
NaK 0,16
Chloroform 1,21[1]
Quecksilber 0,1811[1]
Ethanol 1,40[1]
Tetrachlormethan 1,21[1]
Essigsäure 1,08[1]
Wasser (bei 0 °C) −0,068
Glycerin 0,520[1]
Wasser (bei 20 °C) 0,207
Methanol 1,49[1]
Wasser (bei 100 °C) 0,782

Für Flüssigkeiten kann der Raumausdehnungskoeffizient angegeben werden. Sie dehnen sich isotrop, also in alle Richtungen gleichermaßen aus. Ihre Form wird durch das sie beinhaltende Gefäß vorgegeben, weshalb es sich nicht anbietet, den Längenausdehnungskoeffizienten für sie zu bestimmen, obwohl er formal berechnet werden kann.

Flüssigkeiten haben in der Regel einen deutlich größeren Ausdehnungskoeffizienten als Feststoffe. Deshalb werden Angaben für sie oft in Tausendstel pro Kelvin gemacht, anstelle von Millionstel pro Kelvin für Feststoffe. In den Tabellen dieses Abschnitts sind die Einheiten dementsprechend gewählt.

Gase[Bearbeiten | Quelltext bearbeiten]

Thermische Ausdehnung von Gasen, einigen Flüssigkeiten und einigen Festkörpern

Gase unter Normaldruck und weit oberhalb des Siedepunktes verhalten sich näherungsweise wie ein ideales Gas. Dieses dehnt sich proportional zur absoluten Temperatur aus. Dieser einfache lineare Zusammenhang zwischen Volumen und Temperatur resultiert in einem sich stark mit der Temperatur ändernden Ausdehnungskoeffizienten , der umgekehrt proportional zur absoluten Temperatur ist:

Der Ausdehnungskoeffizient für ideale Gase bei 20 °C ist 1 / 293,15 K−1 = 3,41 · 10−3 K−1. Allgemein kann der Ausdehnungskoeffizient durch die thermischen Zustandsgleichung idealer Gase als γ(T) oder durch die thermischen Zustandsgleichung realer Gase als γ(T,p) berechnet werden.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Gerhard Ondracek: Werkstoffkunde. Leitfaden für Studium und Praxis. 2., überarbeitete Auflage. Expert-Verlag, Sindelfingen 1986, ISBN 3-88508-966-1.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac William M. Haynes (Hrsg.): CRC Handbook of Chemistry and Physics. A ready-reference Book of chemical and physical Data. 92. Auflage. CRC Press, Boca Raton FL u. a. 2011, ISBN 978-1-4398-5511-9.
  2. a b Werner Martienssen, Hans Warlimont (Hrsg.): Springer Handbook of Condensed Matter and Material Data. Springer, Berlin u. a. 2005, ISBN 3-540-44376-2.
  3. a b Christian Georgi, Heinrich Kern: Festkörper mit negativer thermischer Ausdehnung (= Schriftenreihe Werkstoffwissenschaften. Bd. 18). In: Lothar Spiess, Heinrich Kern, Christian Knedlik: Thüringer Werkstofftag 2004. Köster, Berlin 2004, ISBN 3-89574-519-7, S. 63–68.
  4. Lloyd Hunter: The Variation with Temperature of the Principal Elastic Moduli of NaCl near the Melting Point. In: Physical Review. Bd. 61, 1942, S. 84–90, doi:10.1103/PhysRev.61.84.
  5. The coefficients of thermal expansion of wood and wood products (PDF; 5,1 MB) Abgerufen am 10. Mai 2012.