Xanthogenate

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Xanthogenat-Salz (oben) mit einem einwertigen Metall M und Xanthogenat-Ester (unten). R1 und R2 sind Organyl-Reste, z. B. Alkyl-Reste.

Xanthogenat ist eine veraltete Bezeichnung für Salze von O-Alkylestern der Dithiokohlensäure sowie für die daraus zugänglichen O,S-Dialkylester (Xanthogensäureester, Alkylxanthogenate). Sie sind Kohlensäurederivate, in denen zwei Sauerstoffatome durch Schwefel ersetzt sind. Sie enthalten R1–O–CSS bzw. R1–O–CSS–R2 als funktionelle Gruppe.

Schema der Herstellung von „Viscose-Lösung“ aus Cellulose (oben). Im Beispiel sind alle Hydroxygruppen verestert.
Beim Verspinnen von „Viscose-Lösung“ in ein Säurebad (Schwefelsäure) erhält man Viscosefasern (Kunstseide), beim Verpressen durch einen engen Spalt erhält man Cellophan.[1]

Darstellung[Bearbeiten | Quelltext bearbeiten]

Salzartige Xanthogenate lassen sich aus Alkoholaten durch Umsetzung mit Kohlendisulfid darstellen:

Die Ester erhält man aus den Salzen durch Alkylierung:

Reaktionen[Bearbeiten | Quelltext bearbeiten]

Durch Pyrolyse von alkylierten Xanthogenaten entstehen in der Tschugajew-Reaktion Alkene.[2] Da der Reaktionsmechanismus – vergleichbar mit dem einer Decarboxylierung – mit einem cyclischen Übergangszustand beschrieben werden kann, verläuft die Tschugajew-Reaktion als stereochemisch eindeutige syn-Eliminierung.

Durch die Barton-McCombie-Reaktion überführt man einen Alkohol in das Xanthogenat, um ihn anschließend mit Tributylzinnhydrid oder Hexamethyldisilazan radikalisch zum Alkan zu defunktionalisieren.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Vereinfachte Darstellung der Bindung von Xanthogensäurepentylester an Kupferkies. Je ein Wasserstoffatom liegt, an Kohlenstoff gebunden, hinter der Zeichenebene. (Nach Hagihara, 1952)

Xanthogenate finden als anionaktive Sammler bei der Flotation von Blei und Kupfererzen Verwendung.[3]

Chemiefasern auf Cellulose-Basis können als Futterstoff in der Herstellung hochwertiger Textilien benutzt werden.

Die Herstellung von Fasern oder Folien („Cellophan“) auf Cellulose-Basis kann nach dem Xanthogenat-Verfahren erfolgen. Diese Reaktionsführung wurde 1892 von Charles Frederick Cross und Edward John Bevan patentiert,[4] die erste Folienherstellung durch Wiederausfällung der Cellulosephase 1898 von Charles Henry Stearn.[5] Dabei wird der Zellstoff zuerst einige Stunden mit Natronlauge behandelt (Mercerisation). Unter Zusatz von Schwefelkohlenstoff entstehen dann innerhalb von zwei bis drei Stunden das Xanthogenat; dabei wird nur ein Teil der Hydroxygruppen der Glucose-Einheiten verestert. Durch die Bildung des Nebenproduktes Natriumtrithiocarbonat verfärbt sich die Masse braun. Diese Masse wird danach durch Zugabe weiterer Natronlauge verdünnt. Es resultiert eine kolloidale, hochviskose braune Lösung („Viscose-Lösung“), die dem Endprodukt seinen unscharfen Namen gab: „Viskose“. Das Verspinnen der zähflüssigen Lösung durch Einpressen der Fäden in ein schwefelsaures Fällbad liefert dann wieder Cellulose,[6] die auch als „Viskose-Seide“ oder Zellwolle bekannt ist (bzw. Viskosefaser).

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Siegfried Hauptmann: Organische Chemie, 2. durchgesehene Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 652, ISBN 3-342-00280-8.
  2. Ivan Ernest: Bindung, Struktur und Reaktionsmechanismen in der organischen Chemie, Springer-Verlag, 1972, S. 158–159, ISBN 3-211-81060-9.
  3. tachemie.uni-leipzig.de: Flotation (Memento vom 2. November 2013 im Internet Archive), abgerufen am 11. Mai 2009.
  4. Britisches Patent 8700/1892, auch veröffentlicht als DRP: Patent DE70999: Herstellung eines in Wasser löslichen Derivats der Cellulose, genannt „Viscoid“. Veröffentlicht am 5. September 1893, Erfinder: Charles Frederick Cross, Edward John Bevan, Clayton Beadle.
  5. Patent GB189801022: Improvements in the Manufacture and Production of a Material in Film, Sheet, or Web Form. Veröffentlicht am 3. Dezember 1898, Erfinder: Charles Henry Stearn.
  6. Bertram Philipp, Peter Stevens: Grundzüge der Industriellen Chemie, VCH Verlagsgesellschaft mbH, 1987, S. 304, ISBN 3-527-25991-0.