Bernoulli-Verteilung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung für (blau), (grün) und (rot)

Zufallsvariablen mit einer Bernoulli-Verteilung (auch als Bernoullische Verteilung[1], Null-Eins-Verteilung[1], Alternativ-Verteilung[2] oder Boole-Verteilung[3] bezeichnet) benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen es nur zwei mögliche Versuchsausgänge gibt. Einer der Versuchsausgänge wird meistens mit Erfolg bezeichnet und der komplementäre Versuchsausgang mit Misserfolg. Die zugehörige Wahrscheinlichkeit für einen Erfolg nennt man Erfolgswahrscheinlichkeit und die Wahrscheinlichkeit eines Misserfolgs. Beispiele:

  • Werfen einer Münze: Kopf (Erfolg), , und Zahl (Misserfolg), .
  • Werfen eines Würfels, wobei nur eine „6“ als Erfolg gewertet wird: , .
  • Betrachte sehr kleines Raum/Zeit-Intervall: Ereignis tritt ein , tritt nicht ein .

Die Bezeichnung Bernoulli-Versuch (Bernoullian trials nach Jakob I Bernoulli) wurde erstmals 1937 in dem Buch Introduction to Mathematical Probability von James Victor Uspensky verwendet.[4]

Definition[Bearbeiten | Quelltext bearbeiten]

Eine diskrete Zufallsgröße mit Werten in der Menge unterliegt der Bernoulli-Verteilung oder Null-Eins-Verteilung mit dem Parameter , wenn sie der folgenden Wahrscheinlichkeitsfunktion folgt

Die Verteilungsfunktion ist dann

.

Man schreibt dann , oder . Der Parameter heißt in diesem Zusammenhang auch Bernoulli-Parameter.

Eine Zufallsvariable, deren Verteilung eine Bernoulli-Verteilung ist, heißt Bernoulli-verteilt. Eine Bernoulli-verteilte Zufallsvariable wird auch als Bernoulli-Variable bezeichnet.

Ein Zufallsexperiment, dessen Ausgang durch eine Bernoulli-Variable beschrieben ist, heißt Bernoulli-Experiment oder Bernoulli-Versuch. Eine Folge von Bernoulli-Versuchen, deren Zufallsvariablen stochastisch unabhängig und identisch – d. h. mit demselben Bernoulli-Parameter – verteilt sind, heißt Bernoulli-Prozess oder bernoullisches Versuchsschema.

Für bestimmte statistische Anwendungen ist es sinnvoll, den erweiterten Parameterraum ergänzt durch die beiden Grenzfälle und zugrunde zu legen, bei denen die Bernoulli-Verteilung zu einer Einpunktverteilung auf 0 oder 1 degeneriert. In diesen Fällen gilt bzw. .

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Im Folgenden ist mit vorausgesetzt.

Erwartungswert[Bearbeiten | Quelltext bearbeiten]

Die Bernoulli-Verteilung mit Parameter hat den Erwartungswert:

Dies hat den Grund, dass für eine Bernoulli-verteilte Zufallsvariable mit und gilt:

Varianz und weitere Streumaße[Bearbeiten | Quelltext bearbeiten]

Die Bernoulli-Verteilung besitzt die Varianz

denn es ist und damit

.

Damit ist die Standardabweichung

und der Variationskoeffizient

.

Symmetrie[Bearbeiten | Quelltext bearbeiten]

Für den Parameter ist die Bernoulli-Verteilung symmetrisch um den Punkt .

Schiefe[Bearbeiten | Quelltext bearbeiten]

Die Schiefe der Bernoulli-Verteilung ist

.

Dies kann folgendermaßen gezeigt werden. Eine standardisierte Zufallsvariable mit Bernoulli-verteilt nimmt den Wert mit Wahrscheinlichkeit an und den Wert mit Wahrscheinlichkeit . Damit erhalten wir für die Schiefe

Wölbung und Exzess[Bearbeiten | Quelltext bearbeiten]

Der Exzess der Bernoulli-Verteilung ist

und damit ist die Wölbung

.

Momente[Bearbeiten | Quelltext bearbeiten]

Alle k-ten Momente sind gleich und es gilt

.

Es ist nämlich

.

Entropie[Bearbeiten | Quelltext bearbeiten]

Die Entropie der Bernoulli-Verteilung ist

gemessen in Bit.

Modus[Bearbeiten | Quelltext bearbeiten]

Der Modus der Bernoulli-Verteilung ist

.

Median[Bearbeiten | Quelltext bearbeiten]

Der Median der Bernoulli-Verteilung ist

falls gilt, ist jedes ein Median.

Kumulanten[Bearbeiten | Quelltext bearbeiten]

Die kumulantenerzeugende Funktion ist

.

Damit sind die ersten Kumulanten und es gilt die Rekursionsgleichung

Wahrscheinlichkeitserzeugende Funktion[Bearbeiten | Quelltext bearbeiten]

Die wahrscheinlichkeitserzeugende Funktion ist

.

Charakteristische Funktion[Bearbeiten | Quelltext bearbeiten]

Die charakteristische Funktion ist

.

Momenterzeugende Funktion[Bearbeiten | Quelltext bearbeiten]

Die momenterzeugende Funktion ist

.

Beziehung zu anderen Verteilungen[Bearbeiten | Quelltext bearbeiten]

Beziehung zur Binomialverteilung[Bearbeiten | Quelltext bearbeiten]

Die Bernoulli-Verteilung ist ein Spezialfall der Binomialverteilung für . Mit anderen Worten, die Summe von unabhängigen Bernoulli-verteilten Zufallsgrößen mit identischem Parameter genügt der Binomialverteilung, demnach ist die Bernoulli-Verteilung nicht reproduktiv. Die Binomialverteilung ist die -fache Faltung der Bernoulli-Verteilung bei gleichem Parameter bzw. mit gleicher Wahrscheinlichkeit .

Beziehung zur verallgemeinerten Binomialverteilung[Bearbeiten | Quelltext bearbeiten]

Die Summe von voneinander unabhängigen Bernoulli-verteilten Zufallsvariablen, die alle einen unterschiedlichen Parameter besitzen, ist verallgemeinert binomialverteilt.

Beziehung zur Poisson-Verteilung[Bearbeiten | Quelltext bearbeiten]

Die Summe von Bernoulli-verteilten Zufallsgrößen genügt für , und einer Poisson-Verteilung mit dem Parameter . Dies folgt direkt daraus, dass die Summe binomialverteilt ist und für die Binomialverteilung die Poisson-Approximation gilt.

Beziehung zur Zweipunktverteilung[Bearbeiten | Quelltext bearbeiten]

Die Bernoulli-Verteilung ist ein Spezialfall der Zweipunktverteilung mit . Umgekehrt ist die Zweipunktverteilung eine Verallgemeinerung der Bernoulli-Verteilung auf beliebige zweielementige Punktmengen.

Beziehung zur Rademacher-Verteilung[Bearbeiten | Quelltext bearbeiten]

Sowohl die Bernoulli-Verteilung mit als auch die Rademacher-Verteilung modellieren einen fairen Münzwurf (oder eine faire, zufällige Ja/Nein-Entscheidung). Der Unterschied besteht lediglich darin, dass Kopf (Erfolg) und Zahl (Misserfolg) unterschiedlich codiert werden.

Beziehung zur geometrischen Verteilung[Bearbeiten | Quelltext bearbeiten]

Bei Hintereinanderausführung von Bernoulli-verteilten Experimenten ist die Wartezeit auf den ersten Erfolg (oder letzten Misserfolg, je nach Definition) geometrisch verteilt.

Beziehung zur diskreten Gleichverteilung[Bearbeiten | Quelltext bearbeiten]

Die Bernoulli-Verteilung mit ist eine diskrete Gleichverteilung auf .

Urnenmodell[Bearbeiten | Quelltext bearbeiten]

Die Bernoulli-Verteilung lässt sich auch aus dem Urnenmodell erzeugen, wenn mit ist. Dann entspricht dies dem einmaligen Ziehen aus einer Urne mit Kugeln, von denen genau rot sind und alle anderen eine andere Farbe besitzen. Die Wahrscheinlichkeit, eine rote Kugel zu ziehen, ist dann .

Simulation[Bearbeiten | Quelltext bearbeiten]

Bei der Simulation macht man sich zunutze, dass, wenn eine stetig gleichverteilte Zufallsvariable auf ist, die Zufallsvariable Bernoulli-verteilt ist mit Parameter . Da fast jeder Computer Standardzufallszahlen erzeugen kann, ist die Simulation wie folgend:

  1. Erzeuge eine Standardzufallszahl
  2. Ist , gib 0 aus, ansonsten gib 1 aus.

Dies entspricht genau der Inversionsmethode. Die einfache Simulierbarkeit von Bernoulli-verteilten Zufallsvariablen kann auch zur Simulation von binomialverteilten oder verallgemeinert Binomialverteilten Zufallsvariablen genutzt werden.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Hans-Otto Georgii: Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage, de Gruyter, 2009, ISBN 978-3-11-021526-7.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, S. 527.
  2. Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 63, doi:10.1007/978-3-642-45387-8.
  3. Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 254, doi:10.1007/978-3-642-21026-6.
  4. James Victor Uspensky: Introduction to Mathematical Probability, McGraw-Hill, New York 1937, Seite 45