„Hinokitiol“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[ungesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Headbomb (Diskussion | Beiträge)
K Added some relevant studies of hinokitiol
Zeile 94: Zeile 94:


Significant research has also been conducted into the oral applications of Hinokitiol given the increased demand for Hinokitiol based oral products. One such study, affiliated with 8 different institutions in Japan, titled: "Antibacterial Activity of Hinokitiol Against Both Antibiotic-Resistant and -Susceptible Pathogenic Bacteria That Predominate in the Oral Cavity and Upper Airways" came to the conclusion that "hinokitiol exhibits antibacterial activity against a broad spectrum of pathogenic bacteria and has low cytotoxicity towards human epithelial cells."<ref>{{Cite journal |date=June 2019|language=en|pmid=31106894|last1=Domon|first1=H.|last2=Hiyoshi|first2=T.|last3=Maekawa|first3=T.|last4=Yonezawa|first4=D.|last5=Tamura|first5=H.|last6=Kawabata|first6=S.|last7=Yanagihara|first7=K.|last8=Kimura|first8=O.|last9=Kunitomo|first9=E.|last10=Terao|first10=Y.|title=Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways|journal=Microbiology and Immunology|volume=63|issue=6|pages=213–222|doi=10.1111/1348-0421.12688}}</ref>
Significant research has also been conducted into the oral applications of Hinokitiol given the increased demand for Hinokitiol based oral products. One such study, affiliated with 8 different institutions in Japan, titled: "Antibacterial Activity of Hinokitiol Against Both Antibiotic-Resistant and -Susceptible Pathogenic Bacteria That Predominate in the Oral Cavity and Upper Airways" came to the conclusion that "hinokitiol exhibits antibacterial activity against a broad spectrum of pathogenic bacteria and has low cytotoxicity towards human epithelial cells."<ref>{{Cite journal |date=June 2019|language=en|pmid=31106894|last1=Domon|first1=H.|last2=Hiyoshi|first2=T.|last3=Maekawa|first3=T.|last4=Yonezawa|first4=D.|last5=Tamura|first5=H.|last6=Kawabata|first6=S.|last7=Yanagihara|first7=K.|last8=Kimura|first8=O.|last9=Kunitomo|first9=E.|last10=Terao|first10=Y.|title=Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways|journal=Microbiology and Immunology|volume=63|issue=6|pages=213–222|doi=10.1111/1348-0421.12688}}</ref>

==== Relevant Studies: ====

* "Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture."<ref>{{Cite journal|last=Velthuis|first=Aartjan J. W. te|last2=Worm|first2=Sjoerd H. E. van den|last3=Sims|first3=Amy C.|last4=Baric|first4=Ralph S.|last5=Snijder|first5=Eric J.|last6=Hemert|first6=Martijn J. van|date=2010-11-04|title=Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture|url=https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1001176|journal=PLOS Pathogens|language=en|volume=6|issue=11|pages=e1001176|doi=10.1371/journal.ppat.1001176|issn=1553-7374|pmc=PMC2973827|pmid=21079686}}</ref>
* "Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections"<ref>{{Cite journal|last=Krenn|first=B|last2=Gaudernak|first2=E|last3=Holzer|first3=Barbara|last4=Lanke|first4=Kjerstin|last5=Kuppeveld|first5=F.|last6=Seipelt|first6=Joachim|date=2008-11-01|title=Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections|url=https://www.researchgate.net/publication/23385148_Antiviral_Activity_of_the_Zinc_Ionophores_Pyrithione_and_Hinokitiol_against_Picornavirus_Infections|journal=Journal of virology|volume=83|pages=58–64|doi=10.1128/JVI.01543-08}}</ref>
* "Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis."<ref>{{Cite journal|last=Wang|first=Wei-Kung|last2=Chen|first2=Shey-Ying|last3=Liu|first3=I.-Jung|last4=Chen|first4=Yee-Chun|last5=Chen|first5=Hui-Ling|last6=Yang|first6=Chao-Fu|last7=Chen|first7=Pei-Jer|last8=Yeh|first8=Shiou-Hwei|last9=Kao|first9=Chuan-Liang|last10=Huang|first10=Li-Min|last11=Hsueh|first11=Po-Ren|title=Detection of SARS-associated Coronavirus in Throat Wash and Saliva in Early Diagnosis - Volume 10, Number 7—July 2004 - Emerging Infectious Diseases journal - CDC|url=https://wwwnc.cdc.gov/eid/article/10/7/03-1113_article|language=en-us|doi=10.3201/eid1007.031113}}</ref>
* "High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa."<ref>{{Cite journal|last=Xu|first=Hao|last2=Zhong|first2=Liang|last3=Deng|first3=Jiaxin|last4=Peng|first4=Jiakuan|last5=Dan|first5=Hongxia|last6=Zeng|first6=Xin|last7=Li|first7=Taiwen|last8=Chen|first8=Qianming|date=2020-02-24|title=High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa|url=https://www.nature.com/articles/s41368-020-0074-x|journal=International Journal of Oral Science|language=en|volume=12|issue=1|pages=1–5|doi=10.1038/s41368-020-0074-x|issn=2049-3169}}</ref>
* "Antiviral Medication"<ref>{{Citation|last=Dong|first=Liang C.|title=CHRONSET™: An OROS® Delivery System for Chronotherapy|url=http://dx.doi.org/10.1002/9780470498392.ch8|work=Chronopharmaceutics|pages=175–186|publisher=John Wiley & Sons, Inc.|isbn=978-0-470-49839-2|access-date=2020-05-25|last2=Pollock-Dove|first2=Crystal|last3=Wong|first3=Patrick S. L.}}</ref>
* “Antiviral Agent and Throat Candy, Gargle, and Mouthwash Using the Same.” <ref>{{Cite patent|title=Antiviral agent and throat candy, gargle, and mouthwash using the same|gdate=2017-10-20|url=https://patents.google.com/patent/JP2019077617A/en}}</ref>
* “Antibacterial and antifungal Activity Method, Therapeutic Method of Infectious Diseases and Preserving Method of Cosmetics.” <ref>{{Cite journal|last=ARIMA|first=Yaeno|last2=HATANAKA|first2=Akihiko|last3=TSUKIHARA|first3=Sachiko|last4=FUJIMOTO|first4=Kaori|last5=FUKUDA|first5=Keiko|last6=SAKURAI|first6=Hiromu|date=1997|title=Scavenging Activities of .ALPHA.-, .BETA.- and .GAMMA.-Thujaplicins against Active Oxygen Species.|url=http://dx.doi.org/10.1248/cpb.45.1881|journal=CHEMICAL & PHARMACEUTICAL BULLETIN|volume=45|issue=12|pages=1881–1886|doi=10.1248/cpb.45.1881|issn=0009-2363}}</ref>
* “Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice”<ref>{{Cite journal|last=Hiyoshi|first=Takumi|last2=Domon|first2=Hisanori|last3=Maekawa|first3=Tomoki|last4=Yonezawa|first4=Daisuke|last5=Kunitomo|first5=Eiji|last6=Tabeta|first6=Koichi|last7=Terao|first7=Yutaka|date=April 2020|title=Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice|url=http://dx.doi.org/10.1016/j.archoralbio.2020.104679|journal=Archives of Oral Biology|volume=112|pages=104679|doi=10.1016/j.archoralbio.2020.104679|issn=0003-9969|via=}}</ref>


''See the other sections for more information in regards to developing research...''{{clear}}
''See the other sections for more information in regards to developing research...''{{clear}}

Version vom 25. Mai 2020, 07:18 Uhr

Vorlage:Chembox

Hinokitiol (β-thujaplicin) is a natural monoterpenoid found in the wood of trees in the family Cupressaceae. It is a tropolone derivative and one of the thujaplicins.[1] Hinokitiol is widely used in oral care and treatment products for its broad spectrum antimicrobial and anti-inflammatory action. Additionally, it is approved as a food additive for the preservation of food in Japan.

The name of Hinokitiol originates from the fact it was originally isolated in Taiwanese hinoki in 1936.[2] It is actually almost absent in Japanese hinoki while it is contained in high concentration (about 0.04% of heartwood mass) in Juniperus cedrus, Hiba cedar wood (Thujopsis dolabrata) and Western red cedar (Thuja plicata). It can be readily extracted from the cedarwood with solvent and ultrasonication.[3]

Hinokitiol is structurally related to tropolone, which lacks the isopropyl substituent. Tropolones are well-known chelating agents.

Antimicrobial activity

Hinokitiol has a broad range of biological activities, many of which have been explored and characterised in literature. The first, and most well known, is the potent antimicrobial activity against many bacteria and fungi, regardless of antibiotic resistance.[4][5] Specifically, Hinokitiol has been shown to be effective against Streptococcus pneumoniae, Streptococcus mutans and Staphylococcus Aureus, common human pathogens.[6][7] Additionally, Hinokitiol has been shown to possess inhibitory effects on Chlamydia trachomatis and may be clinically useful as a topical drug.[8][9] More recent studies have shown that Hinokitiol also demonstrates anti-viral action when used in combination with a zinc compound against a several human viruses including rhinovirus, coxsackievirus and mengovirus.[10]

Other activities

In addition to broad-spectrum antimicrobial activity, Hinokitiol also possesses anti-inflammatory and anti-tumour activities, characterised in a number of in vitro cell studies and in vivo animal studies. Hinokitiol inhibits key inflammatory markers and pathways, such as TNF-a and NF-kB, and its potential for treatment of chronic inflammatory or autoimmune conditions is being explored. Hinokitiol was found to exert cytotoxicity on several prominent cancer cell lines by inducing autophagic processes.[11][12]

Coronavirus research

The anti-viral effects of Hinokitiol arise from its action as a zinc ionophore. Hinokitiol enables the influx of zinc ions into cells, which inhibit the replication machinery of RNA viruses, and subsequently inhibiting the replication of the virus.[10] Some notable RNA viruses include the human influenza virus, SARS, and the novel coronavirus.[13] A study tested he efficacy of zinc ions with a zinc ionophore on inhibiting SARS replication, another coronavirus which shares many similarities with the novel coronavirus. It found that zinc ions were able to significantly inhibit viral replication within cells, and proved that the action was dependent on zinc influx. This study was done with the zinc ionophore pyrithione, which functions very similarly to Hinokitiol.[13]

"Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections"

A study published in 2008 in affiliation with the Medical University of Vienna and the Department of Medical Microbiology at Radboud University Nijmegen Medical Centre, showed that of hinokitiol inhibit human rhinovirus, coxsackievirus, and mengovirus multiplication. It also showed that hinokitiol interferes with the processing of viral polyproteins, thus inhibiting picornavirus replication. The studied also revealed that hinokitiol lead to the rapid import of extracellular zinc into cells even-though the two are structurally unrelated compounds. The study went on to provide evidence that hinokitiol inhibits the replication of picornaviruses by impairing the viral polyprotein processing and that the antiviral activity of hinokitiol is dependent on the availability of zinc ions.[14]

Products containing Hinokitiol

Hinokitiol is widely used in a range of consumer products including: cosmetics, toothpastes, oral sprays, sunscreens & hair-growth. One of the leading brands in the sale of consumer hinokitiol products is Hinoki Clinical. Hinoki Clinical (est. 1956) was established shortly after the first ‘industrial extraction of hinokitiol’ began in 1955.[15] Hinoki, currently has over 18 different product ranges with hinokitiol as an ingredient. Another brand, namely, Relief Life,[16] has boasted over a million sales with their ‘Dental Series’ toothpaste containing hinokitiol.[17] Other notable producers of hinokitiol based products include Otsuka Pharmaceuticals, Kobayashi Pharmaceuticals, Taisho Pharmaceuticals, SS Pharmaceuticals. Besides Asia, companies such as Swanson Vitamins® are commencing the utilisation of hinokitiol in consumer products in markets such as the U.S.A.[18] and Australia[19] as an anti-oxidant serum and in other endeavours.

Dr ZinX

On 2 April 2020, Advance Nanotek,[20] an Australian producer of zinc oxide, filed a joint patent application with AstiVita Limited,[21] for an anti-viral composition that included various oral care products[22] containing hinokitiol as a vital component. The brand that is now incorporating this new invention is called Dr Zinx and is likely to release its Zinc + Hinokitiol combination in 2020.[23][24] On the 18th of May 2020 Dr ZinX published test results for a “Quantitative suspension test for evaluation of virucidal activity in the medical area”[25][26] returning a '3.25 log' reduction (99.9% reduction) for a neat concentration in 5 minutes against COVID-19 surrogate Feline Coronavirus.[27] Zinc is an essential dietary supplement and trace element in the body. Globally its is estimated that 17.3% of the population has inadequate Zinc intake.[28][29]


History

Discovery

Hinokitiol was discovered in 1936 by Dr. Tetsuo Nozoe from the essential oil component of Taiwan cypress. The discovery of this compound with a heptagonal molecular structure, which was said not to exist in nature, was globally recognised as a great achievement in the history of chemistry.[30]

Nozoe Tetsuo

Nozoe Tetsuo was born in Sendai, Japan on the 16th of May 1902. At the age of 21, he enrolled into a chemistry course at the Tohoku Imperial University in the department of chemistry.[31] After his graduation in March 1926, Nozoe stayed on as a research assistant but soon left Sendai for Formosa (Currently known as Taiwan) at the end of June 1926.[32]

Nozoe's main research interests lay in the study of natural products, especially those found in Formosa. Nozoe's documented work in Formosa concerned the chemical components of Taiwanhinoki, a native conifer growing in mountainous areas.[33] Nozoe determined a new compound, hinokitiol, from the components of this species and reported it for the first time in 1936 in a special issue of Bulletin of the Chemical Society of Japan.[34]

When a symposium, "Tropolone and Allied Compounds" was organised by the Chemical Society of London in November 1950, Nozoe's work on hinokitiol was mentioned as a pioneering contribution to tropolone chemistry, thereby helping Nozoe's research gain recognition in the West.[35] Nozoe was able to publish his work on hinokitiol and its derivatives in Nature in 1951 thanks to J.W. Cook, the chairman of the symposium. Nozoe's work, which began with research on natural products in Taiwan and became developed fully in Japan in the 1950s and the 60s, introduced a new field of organic chemistry, i.e., the chemistry of non-benzenoid aromatic compounds.[36] His work was well received in Japan and thus, Nozoe received the Order of Culture, the highest honour for contributing researchers and artists in 1958, at the age of 56.[37]

A Promising Future

Beginning in the 2000s, researchers recognised that hinokitiol could be of value as a pharmaceutical, notably for inhibiting the bacterium Chlamydia trachomatis.

Chemist Martin Burke and colleagues at the University of Illinois at Urbana–Champaign and at other institutions discovered a significant medical use for hinokitiol. Burke’s goal was to overcome irregular iron transport in animals. Insufficiencies of several proteins can lead to iron deficiency in cells (anemia) or the opposite effect, Hemochromatosis.[38] Using gene-depleted yeast cultures as surrogates, the researchers screened a library of small biomolecules for signs of iron transport and therefore cell growth. Hinokitiol popped up as the one that restored cell functionality. Further work by the team established the mechanism by which hinokitiol restores or reduces cell iron.[39] They then switched their study to mammals and found that when rodents that had been engineered to lack “iron proteins” were fed hinokitiol, they regained iron uptake in the gut. In a similar study on zebrafish, the molecule restored Hemoglobin production.[40] A commentary on the work of Burke et al. nicknamed hinokitiol the “Iron Man molecule”. This is fitting/ironic because discoverer Nozoe’s first name can be translated into English as “iron man”.

Significant research has also been conducted into the oral applications of Hinokitiol given the increased demand for Hinokitiol based oral products. One such study, affiliated with 8 different institutions in Japan, titled: "Antibacterial Activity of Hinokitiol Against Both Antibiotic-Resistant and -Susceptible Pathogenic Bacteria That Predominate in the Oral Cavity and Upper Airways" came to the conclusion that "hinokitiol exhibits antibacterial activity against a broad spectrum of pathogenic bacteria and has low cytotoxicity towards human epithelial cells."[41]

Relevant Studies:

  • "Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture."[42]
  • "Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections"[43]
  • "Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis."[44]
  • "High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa."[45]
  • "Antiviral Medication"[46]
  • “Antiviral Agent and Throat Candy, Gargle, and Mouthwash Using the Same.” [47]
  • “Antibacterial and antifungal Activity Method, Therapeutic Method of Infectious Diseases and Preserving Method of Cosmetics.” [48]
  • “Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice”[49]

See the other sections for more information in regards to developing research...Vorlage:Clear

References

Vorlage:Reflist

  1. Chedgy RJ, Lim YW, Breuil C: Effects of leaching on fungal growth and decay of western redcedar. In: Canadian Journal of Microbiology. 55. Jahrgang, Nr. 5, Mai 2009, S. 578–86, doi:10.1139/W08-161, PMID 19483786.
  2. Murata I, Itô S, Asao T: Tetsuo Nozoe: chemistry and life. In: Chemical Record. 12. Jahrgang, Nr. 6, Dezember 2012, S. 599–607, doi:10.1002/tcr.201200024, PMID 23242794.
  3. Chedgy RJ, Daniels CR, Kadla J, Breuil C: Screening fungi tolerant to Western red cedar (Thuja plicata Donn) extractives. Part 1. Mild extraction by ultrasonication and quantification of extractives by reverse-phase HPLC. In: Holzforschung. 61. Jahrgang, Nr. 2, 2007, S. 190–194, doi:10.1515/HF.2007.033.
  4. Shih YH, Chang KW, Hsia SM, Yu CC, Fuh LJ, Chi TY, Shieh TM: In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. In: Microbiological Research. 168. Jahrgang, Nr. 5, Juni 2013, S. 254–62, doi:10.1016/j.micres.2012.12.007, PMID 23312825.
  5. Morita Y, Sakagami Y, Okabe T, Ohe T, Inamori Y, Ishida N: The mechanism of the bactericidal activity of hinokitiol. In: Biocontrol Science. 12. Jahrgang, Nr. 3, September 2007, S. 101–10, doi:10.4265/bio.12.101, PMID 17927050.
  6. Wang TH, Hsia SM, Wu CH, Ko SY, Chen MY, Shih YH, Shieh TM, Chuang LC, Wu CY: Evaluation of the Antibacterial Potential of Liquid and Vapor Phase Phenolic Essential Oil Compounds against Oral Microorganisms. In: PloS One. 11. Jahrgang, Nr. 9, 28. September 2016, S. e0163147, doi:10.1371/journal.pone.0163147, PMID 27681039, PMC 5040402 (freier Volltext), bibcode:2016PLoSO..1163147W.
  7. Domon H, Hiyoshi T, Maekawa T, Yonezawa D, Tamura H, Kawabata S, Yanagihara K, Kimura O, Kunitomo E, Terao Y: Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways. In: Microbiology and Immunology. 63. Jahrgang, Nr. 6, Juni 2019, S. 213–222, doi:10.1111/1348-0421.12688, PMID 31106894.
  8. Yamano H, Yamazaki T, Sato K, Shiga S, Hagiwara T, Ouchi K, Kishimoto T: In vitro inhibitory effects of hinokitiol on proliferation of Chlamydia trachomatis. In: Antimicrobial Agents and Chemotherapy. 49. Jahrgang, Nr. 6, Juni 2005, S. 2519–21, doi:10.1128/AAC.49.6.2519-2521.2005, PMID 15917561, PMC 1140513 (freier Volltext).
  9. Russell Chedgy: Secondary metabolites of Western red cedar (Thuja plicata): their biotechnological applications and role in conferring natural durability. LAP Lambert Academic Publishing, 2010, ISBN 978-3-8383-4661-8.
  10. a b Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJ, Seipelt J: Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. In: Journal of Virology. 83. Jahrgang, Nr. 1, Januar 2009, S. 58–64, doi:10.1128/JVI.01543-08, PMID 18922875, PMC 2612303 (freier Volltext).
  11. Lee TB, Jun JH: Can Hinokitiol Kill Cancer Cells? Alternative Therapeutic Anticancer Agent via Autophagy and Apoptosis. In: Korean Journal of Clinical Laboratory Science. 51. Jahrgang, Nr. 2, 30. Juni 2019, S. 221–234, doi:10.15324/kjcls.2019.51.2.221 (englisch).
  12. Jayakumar T, Liu CH, Wu GY, Lee TY, Manubolu M, Hsieh CY, Yang CH, Sheu JR: Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis. In: International Journal of Molecular Sciences. 19. Jahrgang, Nr. 4, März 2018, S. 939, doi:10.3390/ijms19040939, PMID 29565268, PMC 5979393 (freier Volltext).
  13. a b te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ: Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. In: PLOS Pathogens. 6. Jahrgang, Nr. 11, November 2010, S. e1001176, doi:10.1371/journal.ppat.1001176, PMID 21079686, PMC 2973827 (freier Volltext).
  14. B. M. Krenn, E. Gaudernak, B. Holzer, K. Lanke, F. J. M. Van Kuppeveld, J. Seipelt: Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections. In: Journal of Virology. 83. Jahrgang, Nr. 1, 15. Oktober 2008, ISSN 0022-538X, S. 58–64, doi:10.1128/jvi.01543-08, PMID 18922875, PMC 2612303 (freier Volltext).
  15. Hinoki Clinical History. In: Hinoki Clinical. Abgerufen am 19. Mai 2020.
  16. Real Life Product Line. In: Anshin Tsuuhan. Abgerufen am 19. Mai 2020.
  17. Dental Series Product Page. In: Rakuten. Abgerufen am 19. Mai 2020.
  18. Antioxidant Serum. In: Swanson Vitamins US. Abgerufen am 19. Mai 2020.
  19. Antioxidant Serum AU. In: Swanson Vitamins Australia. Abgerufen am 19. Mai 2020.
  20. Advance NanoTek | Zinc Oxide Powder. In: Advance NanoTek. Abgerufen am 20. Mai 2020 (englisch).
  21. Health And Beauty | AstiVita. In: Health And Beauty | AstiVita. Abgerufen am 20. Mai 2020 (englisch).
  22. IP Australia: AusPat. In: Australian Government - IP Australia. Abgerufen am 20. Mai 2020.
  23. Patent Update AstiVita. In: Australian Stock Exchange. 20. Mai 2020;.
  24. Zinc + Hinokitiol. In: Dr ZinX. Abgerufen am 20. Mai 2020 (englisch).
  25. Megan Barrett: AstiVita - Testing Results for Dr Zinx Zinc + Hinokitiol Combination. In: ASX (Australian Stock Exchange). 18. Mai 2020, abgerufen am 20. Mai 2020.
  26. Megan Barrett: Dr ZinX Test Results. In: Dr Zinx Oral Spray. 18. Mai 2020, abgerufen am 20. Mai 2020.
  27. Australian Government Department of Health Therapeutic Goods Administration: Surrogate viruses for use in disinfectant efficacy tests to justify claims against COVID-19. In: Therapeutic Goods Administration (TGA). 7. Mai 2020, abgerufen am 20. Mai 2020 (englisch).
  28. K. Ryan Wessells, Kenneth H. Brown: Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. In: PLOS ONE. 7. Jahrgang, Nr. 11, 29. November 2012, ISSN 1932-6203, S. e50568, doi:10.1371/journal.pone.0050568, PMID 23209782, PMC 3510072 (freier Volltext), bibcode:2012PLoSO...750568W.
  29. R. Bethene Ervin, Jocelyn Kennedy-Stephenson: Mineral Intakes of Elderly Adult Supplement and Non-Supplement Users in the Third National Health and Nutrition Examination Survey. In: The Journal of Nutrition. 132. Jahrgang, Nr. 11, 1. November 2002, ISSN 0022-3166, S. 3422–3427, doi:10.1093/jn/132.11.3422, PMID 12421862.
  30. Hinokitiol Discovery. In: Hinoki. Abgerufen am 20. Mai 2020.
  31. Jariya Baosaree, Nattanicha Rakharn, Darawadee Kammee, Patcharapong Pengpajon, Suntiphap Sriaphai, Suttida Sittijanda, Unthika Naudom, Nimit Sriprang, Jutatip Namahoot, Sumrit Mopoung: The Effect of Rice Husk Charcoal and Sintering Temperature on Porosity of Sintered Mixture of Clay and Zeolite. In: Indian Journal of Science and Technology. 11. Jahrgang, Nr. 8, 1. Februar 2018, ISSN 0974-5645, S. 1–12, doi:10.17485/ijst/2018/v11i8/104310.
  32. Ichiro Murata, Sho Ito, Toyonobu, Asao: European Journal of Organic Chemistry. European Chemical Societies Publishing, 2004, Section: Tesuo Nozoe (1902–1996). Pages: 899–928.
  33. Tetsuo Nozoe: ÜBER DIE FARBSTOFFE IM HOLZTEILE DES "HINOKl"-BAUMES. I. HINOKITIN UND HINOKITIOL(Vorläufige Mitteilung). In: Bulletin of the Chemical Society of Japan. 11. Jahrgang, Nr. 3, März 1936, ISSN 0009-2673, S. 295–298, doi:10.1246/bcsj.11.295.
  34. Kunihide Fujimori, Akihiro Kaneko, Yoichiro Kitamori, Michikazu Aoki, Masayuki Makita, Naoki Masuda, Kashio Hokari: Hinokitiol (β-Thujaplicin) from the Essential Oil of Hinoki [Chamaecyparis obtusa (Sieb. et Zucc.) Endl.] In: Journal of Essential Oil Research. 10. Jahrgang, Nr. 6, November 1998, ISSN 1041-2905, S. 711–712, doi:10.1080/10412905.1998.9701018.
  35. TETSUO NOZOE: Substitution Products of Tropolone and Allied Compounds. In: Nature. 167. Jahrgang, Nr. 4261, Juni 1951, ISSN 0028-0836, S. 1055–1057, doi:10.1038/1671055a0, PMID 14843174, bibcode:1951Natur.167.1055N.
  36. Vorlage:Citation
  37. Tung-Bin Lo: Professor Tetsuo Nozoe and Taiwan. In: The Chemical Record. 15. Jahrgang, Nr. 1, 19. Januar 2015, ISSN 1527-8999, S. 373–382, doi:10.1002/tcr.201402099, PMID 25597491.
  38. Hinokitiol. In: American Chemical Society. Abgerufen am 20. Mai 2020 (englisch).
  39. Anthony S. Grillo, Anna M. SantaMaria, Martin D. Kafina, Alexander G. Cioffi, Nicholas C. Huston, Murui Han, Young Ah Seo, Yvette Y. Yien, Christopher Nardone, Archita V. Menon, James Fan: Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. In: Science. 356. Jahrgang, Nr. 6338, 12. Mai 2017, ISSN 0036-8075, S. 608–616, doi:10.1126/science.aah3862, PMID 28495746, PMC 5470741 (freier Volltext), bibcode:2017Sci...356..608G (englisch).
  40. Robert F. ServiceMay. 11, 2017, 2:15 Pm: Iron Man molecule restores balance to cells. In: Science | AAAS. 11. Mai 2017, abgerufen am 20. Mai 2020 (englisch).
  41. H. Domon, T. Hiyoshi, T. Maekawa, D. Yonezawa, H. Tamura, S. Kawabata, K. Yanagihara, O. Kimura, E. Kunitomo, Y. Terao: Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways. In: Microbiology and Immunology. 63. Jahrgang, Nr. 6, Juni 2019, S. 213–222, doi:10.1111/1348-0421.12688, PMID 31106894 (englisch).
  42. Aartjan J. W. te Velthuis, Sjoerd H. E. van den Worm, Amy C. Sims, Ralph S. Baric, Eric J. Snijder, Martijn J. van Hemert: Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. In: PLOS Pathogens. 6. Jahrgang, Nr. 11, 4. November 2010, ISSN 1553-7374, S. e1001176, doi:10.1371/journal.ppat.1001176, PMID 21079686, PMC 2973827 (freier Volltext) – (englisch, plos.org).
  43. B Krenn, E Gaudernak, Barbara Holzer, Kjerstin Lanke, F. Kuppeveld, Joachim Seipelt: Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections. In: Journal of virology. 83. Jahrgang, 1. November 2008, S. 58–64, doi:10.1128/JVI.01543-08 (researchgate.net).
  44. Wei-Kung Wang, Shey-Ying Chen, I.-Jung Liu, Yee-Chun Chen, Hui-Ling Chen, Chao-Fu Yang, Pei-Jer Chen, Shiou-Hwei Yeh, Chuan-Liang Kao, Li-Min Huang, Po-Ren Hsueh: Detection of SARS-associated Coronavirus in Throat Wash and Saliva in Early Diagnosis - Volume 10, Number 7—July 2004 - Emerging Infectious Diseases journal - CDC. doi:10.3201/eid1007.031113 (amerikanisches Englisch, cdc.gov).
  45. Hao Xu, Liang Zhong, Jiaxin Deng, Jiakuan Peng, Hongxia Dan, Xin Zeng, Taiwen Li, Qianming Chen: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. In: International Journal of Oral Science. 12. Jahrgang, Nr. 1, 24. Februar 2020, ISSN 2049-3169, S. 1–5, doi:10.1038/s41368-020-0074-x (englisch, nature.com).
  46. Vorlage:Citation
  47. Vorlage:Cite patent
  48. Yaeno ARIMA, Akihiko HATANAKA, Sachiko TSUKIHARA, Kaori FUJIMOTO, Keiko FUKUDA, Hiromu SAKURAI: Scavenging Activities of .ALPHA.-, .BETA.- and .GAMMA.-Thujaplicins against Active Oxygen Species. In: CHEMICAL & PHARMACEUTICAL BULLETIN. 45. Jahrgang, Nr. 12, 1997, ISSN 0009-2363, S. 1881–1886, doi:10.1248/cpb.45.1881 (doi.org).
  49. Takumi Hiyoshi, Hisanori Domon, Tomoki Maekawa, Daisuke Yonezawa, Eiji Kunitomo, Koichi Tabeta, Yutaka Terao: Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice. In: Archives of Oral Biology. 112. Jahrgang, April 2020, ISSN 0003-9969, S. 104679, doi:10.1016/j.archoralbio.2020.104679 (doi.org).