„Stille Mutation“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
rm link spam
→‎Eigenschaften: klarer, + Refs
Zeile 3: Zeile 3:


== Eigenschaften ==
== Eigenschaften ==
Eine stille Mutation ist meistens eine [[Punktmutation]] durch [[Genmutation#Substitution|Substitution]]. Dabei wird ein [[Nukleotid]] gegen ein anderes getauscht. Das betroffene [[Codon]] wird dabei geändert, aber die codierte Aminosäure bleibt gleich. Eine stille Mutation ohne Auswirkungen wird auch als [[Mutation#Keine_Folgen_–_neutrale_Mutation|neutrale Mutation]] bezeichnet. Eine stille Mutation in einem [[Exon]] wird als ''synonyme Mutation'' bezeichnet.
Eine stille Mutation ist meistens eine [[Punktmutation]] durch [[Genmutation#Substitution|Substitution]]. Dabei wird ein [[Nukleotid]] gegen ein anderes getauscht. Das betroffene [[Codon]] wird dabei geändert, aber die codierte Aminosäure bleibt gleich. Eine stille Mutation ohne Auswirkungen wird auch als [[Mutation#Keine_Folgen_–_neutrale_Mutation|neutrale Mutation]] bezeichnet. Eine stille Mutation in einem [[Exon]] wird als ''synonyme Mutation'' bezeichnet. Selbst eine nichtsynonyme Mutation kann eine stille Mutation sein, wenn die Auswirkung der Änderung einer codierten Aminosäure hinreichend gering ausfällt.<ref>S. Teng, T. Madej, A. Panchenko, E. Alexov: ''Modeling effects of human single nucleotide polymorphisms on protein-protein interactions.'' In: ''[[Biophysical Journal]].'' Band 96, Nummer 6, März 2009, S.&nbsp;2178–2188, {{DOI|10.1016/j.bpj.2008.12.3904}}, PMID 19289044, {{PMC|2717281}}.</ref>


Allerdings kann sich die [[Kinetik (Chemie)|Kinetik]] der Verwendung der verschiedenen Codons für die gleiche [[Aminosäure]] bei der Translation am [[Ribosom]] auf die [[Proteinfaltung]] und somit auf die [[biologische Aktivität]] eines neu entstehenden Proteins auswirken und dadurch auch einen veränderten [[Phänotyp]] bewirken, ohne dass sich die Aminosäuresequenz ändert.<ref name="Campbell">Mary K. Campbell: ''Biochemistry.'' Cengage Learning, 2016, ISBN 978-1-337-51435-4, S. 391.</ref><ref name="pmid20617253">{{cite journal |author=Czech A, Fedyunin I, Zhang G, Ignatova Z |title=Silent mutations in sight: co-variations in tRNA abundance as a key to unravel consequences of silent mutations |journal=Mol Biosyst |volume=6 |issue=10 |pages=1767–72 |date=October 2010 |pmid=20617253 |doi=10.1039/c004796c}}</ref><ref>{{cite journal |author=Komar AA |title=Genetics. SNPs, silent but not invisible |journal=Science |volume=315 |issue=5811 |pages=466–7 |date=January 2007 |pmid=17185559 |doi=10.1126/science.1138239 |url=http://www.sciencemag.org/cgi/content/full/315/5811/466}}</ref><ref name="pmid17716239">{{cite journal |author=Komar AA |title=Silent SNPs: impact on gene function and phenotype |journal=Pharmacogenomics |volume=8 |issue=8 |pages=1075–80 |date=August 2007 |pmid=17716239 |doi=10.2217/14622416.8.8.1075}}</ref> Manche Codons werden aufgrund der vergleichsweise langsamen Bindung von [[tRNA]] dann auch langsam während der Translation in eine Aminosäure übersetzt,<ref name=Kimchi2007>{{cite journal |author=C. Kimchi-Sarfaty, J. M. Oh, I.-W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, M. M. Gottesman,|title=A "Silent" Polymorphism in the MDR1 Gene Changes Substrate Specificity |journal=Science |date=2007-01-26 |volume=315 |issue=5811 |pages=525–8 |doi=10.1126/science.1135308 |pmid=17185560}}</ref> was sich entsprechend auf die [[Codon Usage|bevorzugte Codonverwendung]] sowie auf die [[Sekundärstruktur]] und die Abbaustabilität von [[mRNA]] auswirkt.<ref name="pmid21567958">{{cite journal |author=Angov E |title=Codon usage: nature's roadmap to expression and folding of proteins |journal=Biotechnol J |volume=6 |issue=6 |pages=650–9 |date=June 2011 |pmid=21567958 |pmc=3166658 |doi=10.1002/biot.201000332}}</ref> Beispiele für stille Mutationen, die sich dennoch auf den Phänotyp auswirken sind z. B. das [[p-Glykoprotein]] (synonym ''MDR1'')<ref name="pmid17185560">{{cite journal |author=Kimchi-Sarfaty C, Oh JM, Kim IW, etal |title=A "silent" polymorphism in the MDR1 gene changes substrate specificity |journal=Science |volume=315 |issue=5811 |pages=525–8 |date=January 2007 |pmid=17185560 |doi=10.1126/science.1135308}}</ref> und das [[Cystic Fibrosis Transmembrane Conductance Regulator|CFTR]],<ref>R. Bartoszewski, J. Króliczewski, A. Piotrowski, A. J. Jasiecka, S. Bartoszewska, B. Vecchio-Pagan, L. Fu, A. Sobolewska, S. Matalon, G. R. Cutting, S. M. Rowe, J. F. Collawn: ''Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator.'' In: ''Cellular & molecular biology letters.'' Band 21, 2016, S.&nbsp;23, {{DOI|10.1186/s11658-016-0025-x}}, PMID 28536625, {{PMC|5415761}}.</ref> bei denen es bei manchen stillen Mutationen trotz korrekter Aminosäuresequenz zu einer fehlerhaften Proteinfaltung kommt.
Allerdings ist nicht jede synonyme Mutation eine stille Mutation.<ref>J. V. Chamary, J. L. Parmley, L. D. Hurst: ''Hearing silence: non-neutral evolution at synonymous sites in mammals.'' In: ''[[Nature Reviews Genetics]].'' Band 7, Nummer 2, Februar 2006, S.&nbsp;98–108, {{DOI|10.1038/nrg1770}}, PMID 16418745.</ref><ref name="DOI10.1038/nrg2056">Patrick Goymer: ''Synonymous mutations break their silence.'' In: ''Nature Reviews Genetics.'' 8, 2007, S.&nbsp;92, {{DOI|10.1038/nrg2056}}.</ref><ref>T. Zhou, E. A. Ko, W. Gu, I. Lim, H. Bang, J. H. Ko: ''Non-silent story on synonymous sites in voltage-gated ion channel genes.'' In: ''[[PLOS ONE]].'' Band 7, Nummer 10, 2012, S.&nbsp;e48541, {{DOI|10.1371/journal.pone.0048541}}, PMID 23119053, {{PMC|3485311}}.</ref> Eine synonyme Mutation kann die [[Sekundärstruktur]] einer [[mRNA]] ändern, die sich wiederum auf die Initiation und die Termination der [[Translation (Genetik)|Translation]] auswirkt.<ref>S. A. Shabalina, A. Y. Ogurtsov, N. A. Spiridonov: ''A periodic pattern of mRNA secondary structure created by the genetic code.'' In: ''Nucleic acids research.'' Band 34, Nummer 8, 2006, S.&nbsp;2428–2437, {{DOI|10.1093/nar/gkl287}}, PMID 16682450, {{PMC|1458515}}.</ref> Bei einer synonymen Mutation kann sich die [[Kinetik (Chemie)|Kinetik]] der Verwendung der verschiedenen Codons für die gleiche [[Aminosäure]] bei der Translation am [[Ribosom]] auf die [[Proteinfaltung]] und somit auf Sekundär- und [[Tertiärstruktur]] sowie die [[biologische Aktivität]] eines neu entstehenden Proteins auswirken und dadurch auch einen veränderten [[Phänotyp]] bewirken, ohne dass sich die Aminosäuresequenz ändert.<ref name="Campbell">Mary K. Campbell: ''Biochemistry.'' Cengage Learning, 2016, ISBN 978-1-337-51435-4, S. 391.</ref><ref name="pmid20617253">{{cite journal |author=Czech A, Fedyunin I, Zhang G, Ignatova Z |title=Silent mutations in sight: co-variations in tRNA abundance as a key to unravel consequences of silent mutations |journal=Mol Biosyst |volume=6 |issue=10 |pages=1767–72 |date=October 2010 |pmid=20617253 |doi=10.1039/c004796c}}</ref><ref>{{cite journal |author=Komar AA |title=Genetics. SNPs, silent but not invisible |journal=Science |volume=315 |issue=5811 |pages=466–7 |date=January 2007 |pmid=17185559 |doi=10.1126/science.1138239 |url=http://www.sciencemag.org/cgi/content/full/315/5811/466}}</ref><ref name="pmid17716239">{{cite journal |author=Komar AA |title=Silent SNPs: impact on gene function and phenotype |journal=Pharmacogenomics |volume=8 |issue=8 |pages=1075–80 |date=August 2007 |pmid=17716239 |doi=10.2217/14622416.8.8.1075}}</ref><ref>Z. Zhang, M. A. Miteva, L. Wang, E. Alexov: ''Analyzing effects of naturally occurring missense mutations.'' In: ''Computational and mathematical methods in medicine.'' Band 2012, 2012, S.&nbsp;805827, {{DOI|10.1155/2012/805827}}, PMID 22577471, {{PMC|3346971}}.</ref> Manche Codons werden aufgrund der vergleichsweise langsamen Bindung von [[tRNA]] dann auch langsam während der Translation in eine Aminosäure übersetzt,<ref name=Kimchi2007>{{cite journal |author=C. Kimchi-Sarfaty, J. M. Oh, I.-W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, M. M. Gottesman,|title=A "Silent" Polymorphism in the MDR1 Gene Changes Substrate Specificity |journal=Science |date=2007-01-26 |volume=315 |issue=5811 |pages=525–8 |doi=10.1126/science.1135308 |pmid=17185560}}</ref> was sich entsprechend auf die [[Codon Usage|bevorzugte Codonverwendung]] sowie auf die Sekundärstruktur und die Abbaustabilität von [[mRNA]] auswirkt.<ref name="pmid21567958">{{cite journal |author=Angov E |title=Codon usage: nature's roadmap to expression and folding of proteins |journal=Biotechnol J |volume=6 |issue=6 |pages=650–9 |date=June 2011 |pmid=21567958 |pmc=3166658 |doi=10.1002/biot.201000332}}</ref> Beispiele für stille Mutationen, die sich dennoch auf den Phänotyp auswirken sind z. B. das [[p-Glykoprotein]] (synonym ''MDR1'')<ref name=Kimchi2007 /> und das [[Cystic Fibrosis Transmembrane Conductance Regulator|CFTR]],<ref>R. Bartoszewski, J. Króliczewski, A. Piotrowski, A. J. Jasiecka, S. Bartoszewska, B. Vecchio-Pagan, L. Fu, A. Sobolewska, S. Matalon, G. R. Cutting, S. M. Rowe, J. F. Collawn: ''Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator.'' In: ''Cellular & molecular biology letters.'' Band 21, 2016, S.&nbsp;23, {{DOI|10.1186/s11658-016-0025-x}}, PMID 28536625, {{PMC|5415761}}.</ref> bei denen es bei manchen stillen Mutationen trotz korrekter Aminosäuresequenz zu einer fehlerhaften Proteinfaltung kommt.


== Anwendungen ==
== Anwendungen ==

Version vom 24. April 2019, 00:25 Uhr

Formen der Punktmutation

Eine stille Mutation (synonym stumme Mutation) ist eine Mutation in einer codierenden Abfolge von Nukleinsäuren, die sich nicht auf die Proteinbiosynthese eines neu entstehenden Proteins auswirkt.[1]

Eigenschaften

Eine stille Mutation ist meistens eine Punktmutation durch Substitution. Dabei wird ein Nukleotid gegen ein anderes getauscht. Das betroffene Codon wird dabei geändert, aber die codierte Aminosäure bleibt gleich. Eine stille Mutation ohne Auswirkungen wird auch als neutrale Mutation bezeichnet. Eine stille Mutation in einem Exon wird als synonyme Mutation bezeichnet. Selbst eine nichtsynonyme Mutation kann eine stille Mutation sein, wenn die Auswirkung der Änderung einer codierten Aminosäure hinreichend gering ausfällt.[2]

Allerdings ist nicht jede synonyme Mutation eine stille Mutation.[3][4][5] Eine synonyme Mutation kann die Sekundärstruktur einer mRNA ändern, die sich wiederum auf die Initiation und die Termination der Translation auswirkt.[6] Bei einer synonymen Mutation kann sich die Kinetik der Verwendung der verschiedenen Codons für die gleiche Aminosäure bei der Translation am Ribosom auf die Proteinfaltung und somit auf Sekundär- und Tertiärstruktur sowie die biologische Aktivität eines neu entstehenden Proteins auswirken und dadurch auch einen veränderten Phänotyp bewirken, ohne dass sich die Aminosäuresequenz ändert.[7][8][9][10][11] Manche Codons werden aufgrund der vergleichsweise langsamen Bindung von tRNA dann auch langsam während der Translation in eine Aminosäure übersetzt,[12] was sich entsprechend auf die bevorzugte Codonverwendung sowie auf die Sekundärstruktur und die Abbaustabilität von mRNA auswirkt.[13] Beispiele für stille Mutationen, die sich dennoch auf den Phänotyp auswirken sind z. B. das p-Glykoprotein (synonym MDR1)[12] und das CFTR,[14] bei denen es bei manchen stillen Mutationen trotz korrekter Aminosäuresequenz zu einer fehlerhaften Proteinfaltung kommt.

Anwendungen

Durch eine Codon-Optimierung kann die Genexpressionsrate gesteigert werden, indem nur diejenigen 20 Aminosäurecodons verwendet werden, die in der jeweiligen Art am stärksten exprimiert werden.[15] Eine gehäufte Verwendung suboptimaler Codons ist eine Methode zur Attenuierung von viralen Lebendimpfstoffen.[16]

Literatur

  • Z. Zhang, M. A. Miteva, L. Wang, E. Alexov: Analyzing effects of naturally occurring missense mutations. In: Computational and mathematical methods in medicine. Band 2012, 2012, S. 805827, doi:10.1155/2012/805827, PMID 22577471, PMC 3346971 (freier Volltext).

Einzelnachweise

  1. Julia E. Richards: The Human Genome. Academic Press, 2010, ISBN 978-0-080-91865-5, S. 571.
  2. S. Teng, T. Madej, A. Panchenko, E. Alexov: Modeling effects of human single nucleotide polymorphisms on protein-protein interactions. In: Biophysical Journal. Band 96, Nummer 6, März 2009, S. 2178–2188, doi:10.1016/j.bpj.2008.12.3904, PMID 19289044, PMC 2717281 (freier Volltext).
  3. J. V. Chamary, J. L. Parmley, L. D. Hurst: Hearing silence: non-neutral evolution at synonymous sites in mammals. In: Nature Reviews Genetics. Band 7, Nummer 2, Februar 2006, S. 98–108, doi:10.1038/nrg1770, PMID 16418745.
  4. Patrick Goymer: Synonymous mutations break their silence. In: Nature Reviews Genetics. 8, 2007, S. 92, doi:10.1038/nrg2056.
  5. T. Zhou, E. A. Ko, W. Gu, I. Lim, H. Bang, J. H. Ko: Non-silent story on synonymous sites in voltage-gated ion channel genes. In: PLOS ONE. Band 7, Nummer 10, 2012, S. e48541, doi:10.1371/journal.pone.0048541, PMID 23119053, PMC 3485311 (freier Volltext).
  6. S. A. Shabalina, A. Y. Ogurtsov, N. A. Spiridonov: A periodic pattern of mRNA secondary structure created by the genetic code. In: Nucleic acids research. Band 34, Nummer 8, 2006, S. 2428–2437, doi:10.1093/nar/gkl287, PMID 16682450, PMC 1458515 (freier Volltext).
  7. Mary K. Campbell: Biochemistry. Cengage Learning, 2016, ISBN 978-1-337-51435-4, S. 391.
  8. Czech A, Fedyunin I, Zhang G, Ignatova Z: Silent mutations in sight: co-variations in tRNA abundance as a key to unravel consequences of silent mutations. In: Mol Biosyst. 6. Jahrgang, Nr. 10, Oktober 2010, S. 1767–72, doi:10.1039/c004796c, PMID 20617253.
  9. Komar AA: Genetics. SNPs, silent but not invisible. In: Science. 315. Jahrgang, Nr. 5811, Januar 2007, S. 466–7, doi:10.1126/science.1138239, PMID 17185559 (sciencemag.org).
  10. Komar AA: Silent SNPs: impact on gene function and phenotype. In: Pharmacogenomics. 8. Jahrgang, Nr. 8, August 2007, S. 1075–80, doi:10.2217/14622416.8.8.1075, PMID 17716239.
  11. Z. Zhang, M. A. Miteva, L. Wang, E. Alexov: Analyzing effects of naturally occurring missense mutations. In: Computational and mathematical methods in medicine. Band 2012, 2012, S. 805827, doi:10.1155/2012/805827, PMID 22577471, PMC 3346971 (freier Volltext).
  12. a b C. Kimchi-Sarfaty, J. M. Oh, I.-W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, M. M. Gottesman,: A "Silent" Polymorphism in the MDR1 Gene Changes Substrate Specificity. In: Science. 315. Jahrgang, Nr. 5811, 26. Januar 2007, S. 525–8, doi:10.1126/science.1135308, PMID 17185560.
  13. Angov E: Codon usage: nature's roadmap to expression and folding of proteins. In: Biotechnol J. 6. Jahrgang, Nr. 6, Juni 2011, S. 650–9, doi:10.1002/biot.201000332, PMID 21567958, PMC 3166658 (freier Volltext).
  14. R. Bartoszewski, J. Króliczewski, A. Piotrowski, A. J. Jasiecka, S. Bartoszewska, B. Vecchio-Pagan, L. Fu, A. Sobolewska, S. Matalon, G. R. Cutting, S. M. Rowe, J. F. Collawn: Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. In: Cellular & molecular biology letters. Band 21, 2016, S. 23, doi:10.1186/s11658-016-0025-x, PMID 28536625, PMC 5415761 (freier Volltext).
  15. E. Kotsopoulou, V. N. Kim, A. J. Kingsman, S. M. Kingsman, K. A. Mitrophanous: A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. In: J Virol. (2000), Bd. 74(10), S. 4839–52. PMID 10775623; PMC 112007 (freier Volltext).
  16. S. Mueller, J. R. Coleman, E. Wimmer: Putting synthesis into biology: a viral view of genetic engineering through de novo gene and genome synthesis. In: Chemistry & biology. Band 16, Nummer 3, März 2009, S. 337–347, doi:10.1016/j.chembiol.2009.03.002, PMID 19318214, PMC 2728443 (freier Volltext).