„Liste der Mesonen“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[ungesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Headbomb (Diskussion | Beiträge)
Headbomb (Diskussion | Beiträge)
Zeile 395: Zeile 395:
* [[Timeline of particle discoveries]]
* [[Timeline of particle discoveries]]


==References==
== References ==
{{Reflist|2}}
<references/>

=== References ===
<div class="references-small">
* {{cite journal |author=W.-M. Yao et al. |publisher=[[Particle Data Group]] |title=Review of Particle Physics |journal= [[Journal of Physics G: Nuclear and Particle Physics]] |volume=33 |pages=1–1232 |year=2006 | doi=10.1088/0954-3899/33/1/001}}
* {{cite book |title=Principles of Quantum Mechanics |edition=2nd edition |author=R. Shankar |year=1994 |publisher=[[Plenum Press]] |location=New York (NY) |isbn=0-306-44790-8}}
</div>


==Further reading==
==Further reading==

Version vom 24. Juni 2008, 03:09 Uhr

This is a list of known and predicted mesons. Mesons are made of quarks and as such are part of the subatomic particle family called the hadrons. Mesons are the sub-family of hadrons with a baryon number of 0, as opposed to the baryons which are the sub-family of hadrons with a baryon number of 1. Since mesons are composed of quarks they participate in the strong interaction. Leptons are not composed of quarks and as such do not participate in the strong interaction.

Traditionally, mesons were believed to be composed of only one quarks and one antiquark (diquarks) (quarks have a baryon number of Vorlage:Frac and antiquarks have a baryon number of −Vorlage:Frac). Recently, physicists have reported the existence of tetraquarks—"exotic" mesons made of two quarks and two antiquark, but their existence is not generally accepted. Each meson has a corresponding antiparticle (antimeson) where quarks are replaced by their corresponding antiquarks and vice versa. For example, a positive rho meson is made of one up quark and one down antiquark; thus, its corresponding antiparticle is made of an up antiquark and one down quark (the negative rho meson).

Overview

Spin, orbital angular momentum, and total angular momentum

Spin (quantum number S) is a vector quantity that represents the "intrinsic" angular momentum of a particle. It comes in increments of Vorlage:Frac  (pronounced "h-bar"). The ℏ is often dropped because it is the "fundamental" unit of spin, and it is implied that "spin 1" means "spin 1 ℏ". In some systems of natural units, ℏ is chosen to be 1, therefore does not appear anywhere.

Quarks are fermionic particles of spin Vorlage:Frac (S = Vorlage:Frac). Because spin projections varies in increments of 1 (that is 1 ℏ), a single quark has a spin vector of length Vorlage:Frac, and has two spin projections (Sz = +Vorlage:Frac and Sz = −Vorlage:Frac). Two quarks can have their spins aligned, in which case the two spin vectors add to make a vector of length S = 1 and three spin projections (Sz = +1, Sz = 0, and Sz = −1). If two quarks have unaligned spins, the spin vectors add up to make a vector of length S = 0 and has only one spin projection (Sz = 0), etc. Since baryons are made of three quarks, their spin vectors can add to make a vector of length S = Vorlage:Frac which has four spin projections (Sz = +Vorlage:Frac, Sz = +Vorlage:Frac, Sz = −Vorlage:Frac, and Sz = −Vorlage:Frac), or a vector of length S = Vorlage:Frac with two spin projections (Sz = +Vorlage:Frac, and Sz = −Vorlage:Frac).[1]

There is another quantity of angular momentum, called the orbital angular momentum (quantum number L), that comes in increments of 1 ℏ, which represent the angular moment of due to particles orbiting around each other. The total angular momentum (quantum number J) of a particle is therefore the combination of intrinsic angular momentum (spin) and orbital angular momentum (J = S + L).[1]

Particles physicists are most interested in mesons with no orbital angular momentum (L = 0), therefore the two groups of mesons most studied are the S = 1; L = 0 and S = 0; L = 0, which corresponds to J = 1 and J = 0, although they are not the only ones. It is also possible to obtain J = 1 particles from S = 0 and L = 1. How to distinguish between the S = 1, L = 0 and S = 0, L = 1 mesons is an active area of research in meson spectroscopy.

Parity

Parity refers to whether the wavefunction of a particle is even or odd. A positive parity (P = +) means that the wavefunction is even, while a negative (P = −) means the wavefunction is odd.[1]

is an odd 1-dimensional wavefunction because
is an even 1-dimensional wavefunction because

For mesons, parity is related to the orbital angular momentum by the relation: [2]

.

Physicists are often particularly interested in mesons with no orbital angular momentum (L = 0), which are of odd parity (P = −).

Isospin and charge

Combinations of one u, d or s quarks and one u, d, or s antiquark forming mesons with a spin–0 form the uds mesons nonet.
Combinations of one u, d or s quarks and one u, d, or s antiquark forming mesons with a spin–1 form the uds mesons nonet.

Vorlage:Rewrite Observation of baryons prior to the development of the quark model led particle physicists to believe that some particles were so similar in how they interact with the strong nuclear force, and so similar in mass, that they were really the same particle even though they had different charge. This was due to the fact that prior to the development of the quark model, only baryons made of u, d and s quarks were known (although this was not known at the time). Since the mass of the u and d quarks are very similar, particles made of the same number of u and d quarks have the same mass, and the exact u and d quark composition specifies the charge (u carries charge +Vorlage:Frac while d carries charge −Vorlage:Frac. For example the four Deltas have different charges (Vorlage:SubatomicParticle (uuu), Vorlage:SubatomicParticle (uud), Vorlage:SubatomicParticle (udd), Vorlage:SubatomicParticle (ddd)), but the same mass (~1,232 MeV/c2), and was considered to be a single particle in different charged states.

To explain the different charges, particles physicist came up with the concept of isospin, whose projections varied in increments of 1 just like spin, where the charges corresponded to different isospin projections. Since the "Delta particle" had four "charged states" of mass 1,232 MeV/c2, the delta was said to be of isospin I = Vorlage:Frac whose four charged state Vorlage:SubatomicParticle, Vorlage:SubatomicParticle, Vorlage:SubatomicParticle, and Vorlage:SubatomicParticle corresponded to Iz = +Vorlage:Frac, Iz = +Vorlage:Frac, Iz = −Vorlage:Frac, and Iz = −Vorlage:Frac respectively. Another example is the two nucleons (the proton (uud) and neutron (udd)). The positive nucleon Vorlage:SubatomicParticle (proton) and the neutral nucleon Vorlage:SubatomicParticle (neutron)—each of mass ~938 MeV/c2—were given isospin I = Vorlage:Frac, and the projections Iz = +Vorlage:Frac and Iz = −Vorlage:Frac respectively.[3]

In the "isospin picture", the four Deltas and the two nucleons were thought to be the different states of two particles. However in the quark model, Deltas are different states of nucleons (the N++ or N are forbidden by Pauli's exclusion principle). Isospin, although conveying an inaccurate picture of things, is still used to classify baryons, leading to unnatural and often confusing nomenclature. It was noted that the isospin projections were related to the up and down quark content of particles by the relation:

where the n's are the number of up and down quarks and antiquarks.

Flavour quantum numbers

Vorlage:Rewrite The strangeness flavour quantum number S (not to be confused with spin) was noticed to go up and down along with particle mass. The higher the mass, the lower the strangeness (the more s quarks). Particles could be described with isospin projections (related to charge) and strangeness (mass) (see the uds octet and decuplet figures on the right). As other quarks where discovered, new quantum numbers were made to have similar description of udc and udb octets and decuplets. Since only the u and d mass are similar, this description of particle mass and charge in terms of isospin and flavour quantum numbers only works well for octet and decuplet made of one u, one d and one other quark and breaks down for the other octets and decuplets (for example ucb octet and decuplet). If the quarks all had the same mass, their behaviour would be called symmetric, as they would all behave in exactly the same way with respect to the strong interaction. Since quarks do not have the same mass, they do not interact in the same way (exactly like an electron placed in an electric field will accelerate more than a proton placed in the same field because of its lighter mass), and the symmetry is said to be broken.

It was noted that charge (Q) was related to the isospin projection (Iz), the baryon number (B) and flavour quantum numbers (S, C, B′, T) by the Gell-Mann–Nishijima formula:[3]

S, C, B′, and T represent the strangeness, charmness, bottomness and topness flavour quantum numbers respectively. They are related to the number of strange, charm, bottom, and top quarks and antiquark according to the relations:

meaning that the Gell-Man–Nishijima formula is equivalent to the expression of charge in terms of quark content:

Particle classification

Vorlage:Expand

Mesons are classified according to quark content, quantum numbers I, J, P, C, and G.[4]

Pseudoscalar mesons

Pseudoscalar mesons
Particle name Particle
symbol
Antiparticle
symbol
Quark
content[5]
Rest mass (MeV/c2) IG JPC S C B' Mean lifetime (s) Commonly decays to

(>5% of decays)

Pion[6] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 139.570 18(35) 1 0 0 0 0 2.603 3(5) x 10Vorlage:Su Vorlage:SubatomicParticle + Vorlage:SubatomicParticle
Pion[7] Vorlage:SubatomicParticle Self Vorlage:Ref 134.976 6 ± 0.000 6 1 0−+ 0 0 0 Vorlage:Val Vorlage:SubatomicParticle + Vorlage:SubatomicParticle
Eta meson[8] Vorlage:SubatomicParticle Self Vorlage:Ref 547.51 ± 0.18 0+ 0−+ 0 0 0 Vorlage:Val Vorlage:Fact Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or
Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or

Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle

Eta prime[9] Vorlage:SubatomicParticle(958) Self Vorlage:Ref 957.78 ± 0.14 0+ 0−+ 0 0 0 Vorlage:Val Vorlage:Fact Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or

(Vorlage:SubatomicParticle + Vorlage:SubatomicParticle) / (Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle) or
Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle

Kaon[10] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 497.468 ± 0.022 Vorlage:Frac 0 0 0 0 Vorlage:Ref
Kaon[11] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 493.677 ± 0.016 Vorlage:Frac 0 0 0 0 Vorlage:Val Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or

Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or
Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle

K-Short[12] Vorlage:SubatomicParticle Self Vorlage:Ref 497.7
Vorlage:Fact
Vorlage:Frac 0 (*) 0 0 Vorlage:Val Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or

Vorlage:SubatomicParticle + Vorlage:SubatomicParticle

K-Long[13] Vorlage:SubatomicParticle Self Vorlage:Ref 497.7
Vorlage:Fact
Vorlage:Frac 0 (*) 0 0 Vorlage:Val Vorlage:SubatomicParticle + e + Vorlage:SubatomicParticle or
Vorlage:SubatomicParticle + μ + Vorlage:SubatomicParticle or

Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or
Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle

D meson[14] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 1,869.62 ± 0.20 Vorlage:Frac 0 0 +1 0 Vorlage:Val See D+ decay modes
D meson[15] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 1,864.84 ± 0.17 Vorlage:Frac 0 0 +1 0 Vorlage:Val See D0 decay modes
strange D meson[16] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 1,968.49 ± 34 0 0 +1 +1 0 5.00(7) x Vorlage:Su See Ds+ decay modes
B meson[17] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 5,279.13 ± 31 Vorlage:Frac 0 0 0 +1 Vorlage:Val See B+ decay modes
B meson[18] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 5,279.50 ± 33 Vorlage:Frac 0 0 0 +1 Vorlage:Val See B0 decay modes
Strange B meson[19] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 5,366.1 ± 6 0 0 −1 0 +1 Vorlage:Val See Strange B0 decay modes
Charmed B meson[20] Vorlage:SubatomicParticle Vorlage:SubatomicParticle Vorlage:SubatomicParticleVorlage:SubatomicParticle 6,286 ± 5 0 0 0 +1 +1 Vorlage:Val See Bc+ decay modes

[a] Vorlage:Note Makeup inexact due to non-zero quark masses Vorlage:Fact
[b] Vorlage:NoteStrong eigenstate - no definite lifetime (see kaon notes below)
[c] Vorlage:NoteWeak eigenstate. Makeup is missing small CP–violating term (see notes on neutral kaons below)

Vector mesons

Vector mesons
Particle name Particle
symbol
Antiparticle
symbol
Quark
content[5]
Rest mass (MeV/c2) IG JPC S C B' Mean lifetime (s) Commonly decays to

(>5% of decays)

Charged rho meson[21] Vorlage:SubatomicParticle(770) Vorlage:SubatomicParticle(770) Vorlage:SubatomicParticleVorlage:SubatomicParticle Vorlage:Val 1+ 1−− 0 0 0 Vorlage:Val Vorlage:Fact Vorlage:SubatomicParticle + Vorlage:SubatomicParticle
Neutral rho meson[21] Vorlage:SubatomicParticle(770) Self Vorlage:Val 1+ 1−− 0 0 0 Vorlage:Val Vorlage:Fact Vorlage:SubatomicParticle + Vorlage:SubatomicParticle
Phi meson[22] Vorlage:SubatomicParticle(1020) Self Vorlage:SubatomicParticleVorlage:SubatomicParticle Vorlage:Val 0 1−− 0 0 0 Vorlage:Val Vorlage:Fact Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or
Vorlage:SubatomicParticle + Vorlage:SubatomicParticle or
(Vorlage:SubatomicParticle + Vorlage:SubatomicParticle) / (Vorlage:SubatomicParticle + Vorlage:SubatomicParticle + Vorlage:SubatomicParticle)
J/PsiVorlage:Ref[23] Vorlage:SubatomicParticle Self Vorlage:SubatomicParticleVorlage:SubatomicParticle Vorlage:Val 0 1−− 0 0 0 Vorlage:Val Vorlage:Fact See J/Ψ(1S) decay modes
Upsilon mesonVorlage:Ref[24] Vorlage:SubatomicParticle Self Vorlage:SubatomicParticleVorlage:SubatomicParticle Vorlage:Val 0 1−− 0 0 0 Vorlage:Val Vorlage:Fact See Upsilon decay modes

[d] Vorlage:NoteSee charmonium
[e] Vorlage:NoteSee bottomonium

Notes on neutral kaons

There are two complications with neutral kaons:

  1. Due to neutral kaon mixing, the Vorlage:SubatomicParticle and Vorlage:SubatomicParticle are not eigenstates of strangeness. However, they are eigenstates of the weak force, which determines how they decay, so these are the particles with definite lifetime.
  2. Furthermore, the linear combinations given in the table for the Vorlage:SubatomicParticle and Vorlage:SubatomicParticle are not exactly correct, since there is a small correction due to CP violation. See CP violation in kaons.

Note that these issues also exist in principle for other neutral flavored mesons; however, the weak eigenstates are considered separate particles only for kaons because of their dramatically different lifetimes.

See also

References

Vorlage:Reflist

References

Further reading

  • Griffiths, David J.: Introduction to Electrodynamics (3rd ed.). Prentice Hall, 1998, ISBN 0-13-805326-X.

Vorlage:Particles

  1. a b c Shankar (1994)
  2. http://pdg.lbl.gov/2007/reviews/quarkmodrpp.pdf
  3. a b Wong (1998)
  4. http://pdg.lbl.gov/2007/reviews/namingrpp.pdf
  5. a b W.-M. Yao et al.: Review - Quark model. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  6. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  7. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  8. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  9. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  10. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  11. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  12. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  13. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 1. Mai 2008]).
  14. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  15. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  16. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  17. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  18. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  19. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  20. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  21. a b W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle mesons. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  22. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  23. W.-M. Yao et al.: Particle listings - J/Ψ. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).
  24. W.-M. Yao et al.: Particle listings - Vorlage:SubatomicParticle meson. In: Journal of Physics G. 33. Jahrgang, Nr. 1. Particle Data Group, 2006 (lbl.gov [PDF; abgerufen am 2. Mai 2008]).