Gronwallsche Ungleichung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die gronwallsche Ungleichung ist eine Ungleichung, die es erlaubt, aus der impliziten Information einer Integralungleichung explizite Schranken herzuleiten. Des Weiteren ist sie ein wichtiges Hilfsmittel zum Beweis von Existenz- und Einschließungssätzen für Lösungen von Differential- und Integralgleichungen. Sie ist nach Thomas Hakon Grönwall benannt, der sie im Jahr 1919 bewies und in einer wissenschaftlichen Veröffentlichung beschrieb.

Formulierung[Bearbeiten]

Gegeben seien ein Intervall \ I := [a, b] sowie stetige Funktionen u, \alpha: I \rightarrow \mathbb{R} und \beta: I \rightarrow [0, \infty). Weiter gelte die Integralungleichung

 u(t) \leq \alpha(t) + \int_a^t \beta(s)u(s){\rm d}s

für alle  t \in I . Dann gilt die gronwallsche Ungleichung

 u(t) \leq \alpha(t) + \int_a^t\alpha(s)\beta(s)e^{\int_s^t\beta(\sigma){\rm d}\sigma}{\rm d}s

für alle  t\in I .

Man beachte, dass die Funktion u in der vorausgesetzten Ungleichung noch auf beiden Seiten vorkommt, in der Schlussfolgerung aber nur noch auf der linken Seite, das heißt, man erhält eine echte Abschätzung für u.

Spezialfall[Bearbeiten]

Ist \alpha monoton steigend so vereinfacht sich die Abschätzung zu

u(t) \leq \alpha(t) e^{\int_a^t\beta(s){\rm d}s}\ .

Insbesondere im Fall konstanter Funktionen \alpha \equiv A und \beta \equiv B \geq 0 lautet die gronwallsche Ungleichung

u(t) \leq A + \int_a^tABe^{B(t-s)}{\rm d}s = Ae^{B(t-a)}\ .

Anwendungen[Bearbeiten]

Eindeutigkeitssatz für Anfangswertprobleme[Bearbeiten]

Es sei \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, G \subset \mathbb{R} \times \mathbb{K}^n, (a, y_0) \in G und F = F(x,y): G \rightarrow \mathbb{K}^n stetig sowie lokal Lipschitz-stetig bezüglich der zweiten Variablen. Dann besitzt das Anfangswertproblem \ y' = F(x,y), y(a) = y_0 höchstens eine Lösung y \in C^1([a, b); \mathbb{K}^n).

Linear beschränkte Differentialgleichungen[Bearbeiten]

Seien \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, G \subset [a,b) \times \mathbb{K}^n, (a,y_0) \in G, b < \infty und F = F(x,y): G \rightarrow \mathbb{K}^n stetig. Weiter gebe es Funktionen \alpha,\beta \in C([a,b); [0, \infty)) \cap L^1([a,b)) derart, dass

\|F(x,y)\| \leq \alpha(x) + \beta(x)\|y\|

für alle (x,y) \in G. Dann ist jede Lösung y von

y'=F(x,y)\ ,\ y(a) = y_0

auf [a,b) beschränkt.

Beweis[Bearbeiten]

Es gilt

\|y(x)\| \leq \|y_0\| + \int_a^x\|F(s,y(s))\|{\rm d}s \leq \|y_0\| + \int_a^x\alpha(s){\rm d}s + \int_a^x\beta(s)\|y(s)\|{\rm d}s\ .

Die gronwallsche Ungleichung impliziert

\|y(x)\| \leq \|y_0\| + \int_a^x\alpha(s){\rm d}s + \int_a^x\left(\|y_0\| + \int_a^s\alpha(\sigma){\rm d}\sigma\right)\beta(s)e^{\int_s^x\beta(\sigma){\rm d}\sigma}{\rm d}s\ ,

und daraus ergibt sich folgende Abschätzung gegen eine Konstante:

\|y(x)\| \leq \|y_0\| + \int_a^b\alpha(s){\rm d}s + \int_a^b\left(\|y_0\| + \int_a^b\alpha(\sigma){\rm d}\sigma\right)\beta(s)e^{\int_a^b\beta(\sigma){\rm d}\sigma}{\rm d}s\ .

Weblinks[Bearbeiten]

Literatur[Bearbeiten]