Transconvolution

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 23. Juli 2016 um 20:12 Uhr durch Christian1985 (Diskussion | Beiträge) (HC: Entferne Kategorie:Mathematik). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Der Begriff Transconvolution bezeichnet ein numerisches Verfahren aus dem Bereich der medizinischen Bildgebung, insbesondere der Emissionscomputertomographie, das eine nachträgliche Manipulation der PSF bei bereits aufgenommenen Bildern ermöglicht.

Eigenschaften eines Bildes wie die räumliche Auflösung oder die Darstellbarkeit kleiner Objekte werden durch die Punktspreizfunktion (engl. „point spread function“, PSF) des für die Bildaufnahme verwendeten bildgebenden Systems bestimmt. Unterschiedliche bildgebende Systeme mit unterschiedlichen PSFs liefern daher etwas unterschiedliche Bilder auch ein und desselben Objektes.

Ausgehend von bekannten PSFs unterschiedlicher tomographischer Systeme, kann durch das Transconvolution-Verfahren ein Bild, das auf einem bestimmten Tomographen aufgenommen wurde, derart umgerechnet werden, als wäre es von einem anderen Tomographen aufgenommen worden. Das Verfahren kann so die Vergleichbarkeit von Bildern, die ursprünglich auf verschiedenen Systemen aufgenommen wurden, sicherstellen.

Definition

Für zwei unterschiedliche Tomographen mit unterschiedlichen Punktspreizfunktionen und kann die Bildgebung als Faltung beschrieben werden als:

wobei "" den Faltungsoperator darstellt und und für die beiden leicht unterschiedlichen von den jeweiligen Tomographen erzeugten Bilder desselben Objektes stehen.

Aus den beiden Gleichungen folgt unmittelbar die Beziehung:

wobei für die Inverse der Punktspreizfunktion steht.

Während die inverse Punktspreizfunktion divergiert und nicht numerisch bestimmt werden kann, ist der vollständige Term unter bestimmten Randbedingungen durch numerische Methoden näherungsweise berechenbar.

Die Transconvolution-Funktion wird nun definiert als

mit der resultierenden Beziehung

In Kenntnis der PSFs der jeweiligen Tomographen ist es somit möglich ein durch den ersten Tomographen erzeugtes Bild jeweils so umzurechnen als wäre es als durch den zweiten Tomographen aufgenommen worden. Selbstverständlich unterliegt das Verfahren bestimmten Grenzen, insbesondere kann das berechnete keine Raumfrequenzen darstellen, die durch die nicht mehr erfasst werden, i.e. die räumliche Auflösung eines Bildes kann nicht beliebig erhöht werden.

Anwendung in der medizinischen Bildgebung

Die zweite Punktspreizfunktion muss nicht einen realen Tomographen repräsentieren sondern kann direkt definiert werden und repräsentiert dann einen virtuellen Tomographen mit entsprechenden Eigenschaften. Ausgehend von der Definition eines standardisierten virtuellen Tomographen sowie der Bestimmung der Abbildungseigenschaften unterschiedlicher realer Tomographen erlaubt die Transconvolution-Methode eine einheitliche und quantitativ vergleichbare Darstellung der von den unterschiedlichen Tomographen oder Systemen aufgenommen Bilddaten so, als wären alle Messungen gleichermaßen durch das standardisierte virtuelle System erfolgt. Das Verfahren unterstützt damit quantitative Vergleiche von Bildern, die durch unterschiedliche bildgebende Systeme und insbesondere durch unterschiedliche klinische Tomographen, aufgenommen wurden.

Literatur

  • T. Weitzel, F. Corminboeuf, B. Klaeser, T Krause: Kreuzkalibrierung von Positronen-Emissions-Tomographen für multizentrische Studien: Festkörper-Phantom und Transconvolution. In: Bulletin der Schweizerische Gesellschaft für Strahlenbiologie und Medizinische Physik. Oct. 2010, S. 9ff. SGSMP-Bulletin 72
  • T. Weitzel, F. Corminboeuf, B. Klaeser, T. Krause, T Beyer: Transconvolution and virtual PET: A new concept for quantification of PET in multi-center trials. In: Journal of Nuclear Medicine. 51, 2010, S. 115.
  • G. A. Prenosil, T. Weitzel, M. Hentschel, B. Klaeser, T Krause: Transconvolution and the virtual positron emission tomograph - A new method for cross calibration in quantitative PET/CT imaging. In: Medical Physics. 40, Juni 2013, S. 062503.

Weblinks