DIN 1302

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Logo des Deutschen Instituts für Normung DIN 1302
Bereich Mathematik
Titel Allgemeine mathematische Zeichen und Begriffe
Kurzbeschreibung: Definiert Zeichen, ihre Sprechweise und zugehörige Aussage
Letzte Ausgabe 1999-12
ISO DIN EN ISO 80000-2

Die DIN-Norm DIN 1302 legt allgemeine mathematische Zeichen und Begriffe fest. Eine repräsentative Auswahl davon wird hier aufgeführt. Zur vollständigen Liste und zu den Definitionen muss auf den Originaltext verwiesen werden.

Pragmatische Zeichen[Bearbeiten | Quelltext bearbeiten]

Bei den pragmatischen Zeichen handelt es sich nicht um mathematische Zeichen im engeren Sinn. Ihre Bedeutung wird erst durch den Benutzer und eine Anwendungssituation von Fall zu Fall präzisiert. Beispiele:

(ungefähr gleich), (wesentlich kleiner), (entspricht),
(gerundet gleich), (unendlich),    (und so weiter bis / und so weiter (unbegrenzt)), (Delta )

Allgemeine Mathematische Relationen und Verknüpfungen[Bearbeiten | Quelltext bearbeiten]

Beispiele:

(gleich), (ungleich), (definitionsgemäß gleich),
(kleiner), (größer gleich),
(plus; Summe), (minus; Differenz),
oder (mal; Produkt) – in DIN 1338 ist auch das in Angaben wie zugelassen,
auf Tastaturen werden auch die Zeichen und verwendet, die aber in mathematischen Formeln nicht gebraucht werden sollen,
oder (durch; Quotient) – in einigen Anwendungen wird auch geschrieben,
auf Tastaturen wird auch das Zeichen verwendet, das aber in Formeln nicht gebraucht werden soll,
(Summe), (Produkt),
oder (proportional)

Besondere Zahlen und Verknüpfungen[Bearbeiten | Quelltext bearbeiten]

Beispiele:

(null; für alle ), (eins; für alle ), (pi; Kreisumfang zu Durchmesser), (e; Basis des natürlichen Logarithmus),
( hoch ), (-te Wurzel ; , wenn ), ( Fakultät), ( über ),
(Signum ), ( Betrag), , (ganzzahliger und gebrochener Anteil von )

Komplexe Zahlen[Bearbeiten | Quelltext bearbeiten]

Beispiele mit als komplexe Zahl, als reelle Zahlen in  :

oder in der Elektrotechnik (imaginäre Einheit),
(Realteil ; ), (Imaginärteil ; ),
oder ( konjugiert(-komplex)), (Argument von )

Zahlenmengen[Bearbeiten | Quelltext bearbeiten]

Beispiele:

oder (Menge der ganzen Zahlen), oder (Menge der komplexen Zahlen),
oder   (offenes Intervall),   (abgeschlossenes Intervall)

Grenzwerte[Bearbeiten | Quelltext bearbeiten]

Beispiele:

(Limes für gegen ),
(asymptotisch gleich)

Differenziation, Integration[Bearbeiten | Quelltext bearbeiten]

Beispiele:

oder  ( Strich von oder nach in ),
oder oder in bestimmten Zusammenhängen   (Ableitung überall dort, wo differenzierbar ist),
, , … , oder ;   , … (mehrfache Ableitung)
(partielle Ableitung)
, (unbestimmtes und bestimmtes Integral)
oder (an den Grenzen)

Exponential- und Logarithmusfunktionen[Bearbeiten | Quelltext bearbeiten]

Beispiele mit als komplexe Zahl, als reelle Zahlen:

oder , (e hoch , Exponentialfunktion),
(Logarithmus von zur Basis ), (natürlicher Logarithmus), (dekadischer Logarithmus), (binärer Logarithmus),
auch ist zulässig, wenn die Basis getrennt vereinbart wird

Kreis- und Hyperbelfunktionen sowie ihre Umkehrungen[Bearbeiten | Quelltext bearbeiten]

(Sinus, Kosinus, Tangens, Kotangens),
(Hyperbelsinus …),
(Arkussinus …),
(Areahyperbelsinus …),
auch (Sekans, Kosekans) werden definiert.

Weitere Zeichen[Bearbeiten | Quelltext bearbeiten]

Weitere mathematische Zeichen werden in speziellen Normen festgelegt, zum Beispiel

  • zu Vektoren, Matrizen und Tensoren in DIN 1303 Vektoren, Matrizen, Tensoren; Zeichen und Begriffe
  • zu Logik und Mengenlehre in DIN 5473 Logik und Mengenlehre; Zeichen und Begriffe
  • zu Fourier-, Laplace- und Z-Transformation in DIN 5487 Fourier-, Laplace- und Z-Transformation; Zeichen und Begriffe
  • für Naturwissenschaft und Technik in DIN EN ISO 80000-2 Größen und Einheiten – Teil 2: Mathematische Zeichen für Naturwissenschaft und Technik

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]