Zur Beschreibungsseite auf Commons

Datei:GreatStellatedDodecahedron.jpg

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Originaldatei (853 × 794 Pixel, Dateigröße: 231 KB, MIME-Typ: image/jpeg)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: Great stellated dodecahedron, rendered with POVRay
 
Diese Grafik wurde mit POV-Ray erstellt.
Quelle Eigenes Werk
Urheber User Cyp

Lizenz

Ich, der Urheberrechtsinhaber dieses Werkes, veröffentliche es hiermit unter der folgenden Lizenz:
GNU head Es ist erlaubt, die Datei unter den Bedingungen der GNU-Lizenz für freie Dokumentation, Version 1.2 oder einer späteren Version, veröffentlicht von der Free Software Foundation, zu kopieren, zu verbreiten und/oder zu modifizieren; es gibt keine unveränderlichen Abschnitte, keinen vorderen und keinen hinteren Umschlagtext.

Der vollständige Text der Lizenz ist im Kapitel GNU-Lizenz für freie Dokumentation verfügbar.

w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Diese Datei ist unter der Creative-Commons-Lizenz „Namensnennung – Weitergabe unter gleichen Bedingungen 3.0 nicht portiert“ lizenziert.
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.
Diese Lizenzmarkierung wurde auf Grund der GFDL-Lizenzaktualisierung hinzugefügt.
w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Diese Datei ist unter den Creative-Commons-Lizenzen „Namensnennung – Weitergabe unter gleichen Bedingungen 2.5 generisch“, „2.0 generisch“ und „1.0 generisch“ lizenziert.
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.
Du darfst es unter einer der obigen Lizenzen deiner Wahl verwenden.

Source

//GPL
#include <stdio.h>
#include <math.h>

#include <vector>

using std::vector;

const char *theader = "//Picture   ***  Use flashiness=1 !!! ***\n//\n//   +w1024 +h1024 +a0.3 +am2\n//   +w512 +h512 +a0.3 +am2\n//\n//Movie   ***  Use flashiness=0.25 !!! ***\n//\n//   +kc +kff120 +w256 +h256 +a0.3 +am2\n//   +kc +kff60 +w256 +h256 +a0.3 +am2\n//\"Fast\" preview\n//   +w128 +h128\n#declare notwireframe=1;\n#declare withreflection=0;\n#declare flashiness=1; //Still pictures use 1, animated should probably be about 0.25.\n\n#declare rotation=seed(%d);\n\n#declare rot1=rand(rotation)*pi*2;\n#declare rot2=acos(1-2*rand(rotation));\n#declare rot3=(rand(rotation)+clock)*pi*2;\n#macro dorot()\n  rotate rot1*180/pi*y\n  rotate rot2*180/pi*x\n  rotate rot3*180/pi*y\n#end\n\n";

const char *tline = "object {\n  cylinder { <%lf,%lf,%lf>, <%lf,%lf,%lf>, .01 dorot() }\n  pigment { colour <.3,.3,.3> }\n  finish { ambient 0 diffuse 1 phong 1 }\n}\n\n";

const char *tvertex = "object {\n  sphere { <%lf,%lf,%lf>, .01 dorot() }\n  pigment { colour <.3,.3,.3> }\n  finish { ambient 0 diffuse 1 phong 1 }\n}\n\n";

const char *tstartmesh = "object {\n  mesh {\n";

const char *ttriangle = "    triangle {\n      <%lf,%lf,%lf>, <%lf,%lf,%lf>, <%lf,%lf,%lf>\n    }\n";

const char *tendmesh = "    //sphere { <0,0,0>, 1 }\n    //sphere { <0,0,0>, ld+.01 inverse }\n    dorot()\n  }\n  pigment { colour rgbt <.8,.8,.8,.4> }\n  finish { ambient 0 diffuse 1 phong flashiness #if(withreflection) reflection { .2 } #end }\n  //interior { ior 1.5 }\n  photons {\n    target on\n    refraction on\n    reflection on\n    collect on\n  }\n}\n\n";

const char *tfooter = "//  CCC Y Y PP\n//  C   Y Y P P\n//  C    Y  PP\n//  C    Y  P\n//  CCC  Y  P\n\n#local a=0;\n#while(a<11.0001)\n  light_source { <4*sin(a*pi*2/11), 5*cos(a*pi*6/11), -4*cos(a*pi*2/11)> colour (1+<sin(a*pi*2/11),sin(a*pi*2/11+pi*2/3),sin(a*pi*2/11+pi*4/3)>)*2/11 }\n  #local a=a+1;\n#end\n\nbackground { color <1,1,1> }\n\ncamera {\n  perspective\n  location <0,0,0>\n  direction <0,0,1>\n  right x/2\n  up y/2\n  sky <0,1,0>\n  location <0,0,-4.8>\n  look_at <0,0,0>\n}\n\nglobal_settings {\n  max_trace_level 40\n  photons {\n    count 200000\n    autostop 0\n  }\n}\n";

#define PHI ((1+sqrt(5))/2)
#define PI (3.14159265358979323846264338327)
#define SQ2 (sqrt(2))
#define SQ3 (sqrt(3))

bool eq(double a, double b)
{
    return a+0.00001>=b&&b+0.00001>=a;
}

bool eqt(double a1, double a2, double a3, double b1, double b2, double b3)
{
//printf("Tri: {%lf, %lf, %lf}, {%lf, %lf, %lf}\n", a1, a2, a3, b1, b2, b3);
    return eq(a1, b1)? eq(a2, b2)? eq(a3, b3):eq(a2, b3)&&eq(a3, b2):eq(a1, b2)? eq(a2, b3)? eq(a3, b1):eq(a2, b1)&&eq(a3, b3):eq(a1, b3)&&(eq(a2, b1)? eq(a3, b2):eq(a2, b3)&&eq(a3, b2));
}

class vec
{
public:
    double x, y, z;
    vec() : x(0), y(0), z(0) {}
    vec(double nx, double ny, double nz) : x(nx), y(ny), z(nz) {}
    vec operator + (vec o)
    {
        return vec(x+o.x, y+o.y, z+o.z);
    }
    vec operator - (vec o)
    {
        return vec(x-o.x, y-o.y, z-o.z);
    }
    double operator * (vec o)
    {
        return x*o.x+y*o.y+z*o.z;
    }
    vec operator * (double o)
    {
        return vec(x*o, y*o, z*o);
    }
    vec operator ^ (vec o)
    {
        return vec(y*o.z-z*o.y, z*o.x-x*o.z, x*o.y-y*o.x);
    }
    double norm()
    {
        return sqrt(x*x+y*y+z*z);
    }
};

class vec2
{
public:
    double x, y;
    vec2() {}
    vec2(double nx, double ny) : x(nx), y(ny) {}
    vec2 operator + (vec2 o)
    {
        return vec2(x+o.x, y+o.y);
    }
    vec2 operator - (vec2 o)
    {
        return vec2(x-o.x, y-o.y);
    }
    double operator * (vec2 o)
    {
        return x*o.x+y*o.y;
    }
    vec2 operator * (double o)
    {
        return vec2(x*o, y*o);
    }
    vec2 operator ~ ()
    {
        return vec2(y, -x);
    }
    double norm()
    {
        return sqrt(x*x+y*y);
    }
};

vector<vec> cyclicperm(vector<vec> v)
{
    vector<vec> r;
    vector<vec>::iterator i;
    for(i = v.begin(); i!=v.end(); ++i)
    {
        r.push_back(*i);
        r.push_back(vec(i->y, i->z, i->x));
        r.push_back(vec(i->z, i->x, i->y));
    }
    return r;
}

vector<vec> altperm(vector<vec> v)
{
    vector<vec> r;
    vector<vec>::iterator i;
    for(i = v.begin(); i!=v.end(); ++i)
    {
        r.push_back(*i);
        r.push_back(vec(i->x, i->z, i->y));
    }
    return r;
}

vector<vec> signperm(vector<vec> v)
{
    vector<vec> r;
    vector<vec>::iterator i;
    for( i = v.begin(); i!=v.end(); ++i )
    {
        int j;
        for(j = 0; j<8; ++j)
            if(((j&1)||i->x)&&((j&2)||i->y)&&((j&4)||i->z))
                r.push_back(vec(j&1? i->x:-i->x, j&2? i->y:-i->y, j&4? i->z:-i->z));
    }
    return r;
}

vector<vec> mvvec(double x, double y, double z)
{
    vector<vec> v;
    v.push_back(vec(x, y, z));
    return v;
}

vector<vec> mvvec(vec q)
{
    vector<vec> v;
    v.push_back(q);
    return v;
}

vector<vec> concat(const vector<vec> a, const vector<vec> b)
{
    vector<vec> r;
    r = a;
    r.insert(r.end(), b.begin(), b.end());
    return r;
}

void printvvec(FILE *f, vector<vec> v)
{
    vector<vec>::iterator i;
    for(i = v.begin(); i!=v.end(); ++i)
        fprintf(f, tvertex, i->x, i->y, i->z);
}

void printvveclines(FILE *f, vector<vec> v, double len)
{
    vector<vec>::iterator i, j;
    len *= len;
    for(i = v.begin(); i!=v.end(); ++i)
        for(j = i+1; j!=v.end(); ++j)
            if(eq((*i-*j)*(*i-*j), len))
                fprintf(f, tline, i->x, i->y, i->z, j->x, j->y, j->z);
}

void printvveclines(FILE *f, vector<vec> v)
{
    vector<vec>::iterator i;
    for(i = v.begin(); i!=v.end(); i += 2)
        fprintf(f, tline, i->x, i->y, i->z, (i+1)->x, (i+1)->y, (i+1)->z);
}

void printvvecdottedlines(FILE *f, vector<vec> v)
{
    vector<vec>::iterator i;
    int n, m;
    double s;
    for(i = v.begin(); i!=v.end(); i += 2)
//    for(i = v.begin(); i!=v.begin()+12; i += 2)
    {
        s = (*i-*(i+1)).norm();
        m = (int)(s/0.04+.5);
        s = 1./(double)m;
        for(n = 1; n<m; ++n)
        {
            vec c = *i+(*(i+1)-*i)*(s*n);
            fprintf(f, tvertex, c.x, c.y, c.z);
        }
    }
}

void printvvectriangles(FILE *f, vector<vec> v, double len1, double len2, double len3)
{
    vector<vec>::iterator i, j, k;
    len1 *= len1;
    len2 *= len2;
    len3 *= len3;
    for(i = v.begin(); i!=v.end(); ++i)
        for(j = i+1; j!=v.end(); ++j)
            for(k = j+1; k!=v.end(); ++k)
                if(eqt((*i-*j)*(*i-*j), (*j-*k)*(*j-*k), (*k-*i)*(*k-*i), len1, len2, len3))
                    fprintf(f, ttriangle, i->x, i->y, i->z, j->x, j->y, j->z, k->x, k->y, k->z);
}

void printvvectriangles(FILE *f, vector<vec> v)
{
    vector<vec>::iterator i;
    for(i = v.begin(); i!=v.end(); i += 3)
//i = v.begin();
        fprintf(f, ttriangle, i->x, i->y, i->z, (i+1)->x, (i+1)->y, (i+1)->z, (i+2)->x, (i+2)->y, (i+2)->z);
/*i += 3;
        fprintf(f, ttriangle, i->x, i->y, i->z, (i+1)->x, (i+1)->y, (i+1)->z, (i+2)->x, (i+2)->y, (i+2)->z);
i += 3;
        fprintf(f, ttriangle, i->x, i->y, i->z, (i+1)->x, (i+1)->y, (i+1)->z, (i+2)->x, (i+2)->y, (i+2)->z);
i += 3;
        fprintf(f, ttriangle, i->x, i->y, i->z, (i+1)->x, (i+1)->y, (i+1)->z, (i+2)->x, (i+2)->y, (i+2)->z);
i += 3;
        fprintf(f, ttriangle, i->x, i->y, i->z, (i+1)->x, (i+1)->y, (i+1)->z, (i+2)->x, (i+2)->y, (i+2)->z);
i += 3;
        fprintf(f, ttriangle, i->x, i->y, i->z, (i+1)->x, (i+1)->y, (i+1)->z, (i+2)->x, (i+2)->y, (i+2)->z);
*/}

void SmallStellatedDodecahedron()
{
    vector<vec> v;
    v = cyclicperm(signperm(mvvec(vec(0, PHI, 1)*(1/sqrt(PHI+2)))));

    FILE *f;
    f = fopen("SmallStellatedDodecahedron.pov", "wb");
    fprintf(f, theader, 22491);
    printvvec(f, v);
    printvveclines(f, v, 2*PHI*(1/sqrt(PHI+2)));
    fprintf(f, tstartmesh);
    v = concat(v, cyclicperm(signperm(mvvec(vec(0, 2-PHI, 1)*(1/sqrt(PHI+2))))));
    v = concat(v, signperm(mvvec(vec(PHI-1, PHI-1, PHI-1)*(1/sqrt(PHI+2)))));
    printvvectriangles(f, v, (2*PHI-2)*(1/sqrt(PHI+2)), (2*PHI-2)*(1/sqrt(PHI+2)), (4-2*PHI)*(1/sqrt(PHI+2)));
    fprintf(f, tendmesh);
    fprintf(f, tfooter);
    fclose(f);
}

void GreatStellatedDodecahedron()
{
    vector<vec> v;
    v = concat(signperm(mvvec(vec(1, 1, 1)*(1/SQ3))), cyclicperm(signperm(mvvec(vec(0, PHI, 1/PHI)*(1/SQ3)))));

    FILE *f;
    f = fopen("GreatStellatedDodecahedron.pov", "wb");
    fprintf(f, theader, 7409);//7412);
    printvvec(f, v);
    printvveclines(f, v, 2*PHI*(1/SQ3));
    fprintf(f, tstartmesh);
    v = concat(v, cyclicperm(signperm(mvvec(vec(0, 2-PHI, PHI-1)*(1/SQ3)))));
    printvvectriangles(f, v, (2*PHI-2)*(1/SQ3), (2*PHI-2)*(1/SQ3), (4-2*PHI)*(1/SQ3));
    fprintf(f, tendmesh);
    fprintf(f, tfooter);
    fclose(f);
}

void GreatDodecahedron()
{
    vector<vec> v;
    v = cyclicperm(signperm(mvvec(vec(0, PHI, 1)*(1/sqrt(PHI+2)))));

    FILE *f;
    f = fopen("GreatDodecahedron.pov", "wb");
    fprintf(f, theader, 11404);
    printvveclines(f, v, 2*(1/sqrt(PHI+2)));
    v = concat(v, concat(signperm(mvvec(vec(PHI-1, PHI-1, PHI-1)*(1/sqrt(PHI+2)))), cyclicperm(signperm(mvvec(vec(0, 2-PHI, 1)*(1/sqrt(PHI+2)))))));
    printvvec(f, v);
    fprintf(f, tstartmesh);
    printvvectriangles(f, v, (2*PHI-2)*(1/sqrt(PHI+2)), (2*PHI-2)*(1/sqrt(PHI+2)), (2)*(1/sqrt(PHI+2)));
    fprintf(f, tendmesh);
    fprintf(f, tfooter);
    fclose(f);
}

vector<vec> IcosaParse(const char *vs)
{
    vector<vec> v, p;
    v = cyclicperm(signperm(mvvec(vec(0, PHI, 1))));
vec av;
    vector<vec>::iterator i, j, k;
    int q;
    static const vec2 rats[9] = {vec2(1, 0), vec2(PHI-1, 2-PHI), vec2(2-PHI, PHI-1), vec2(0, 1), vec2(0, PHI-1), vec2(0, 2-PHI), vec2(0, 0), vec2(2-PHI, 0), vec2(PHI-1, 0)};

    for(i = v.begin(); i!=v.end(); ++i)
        for(j = v.begin(); j!=v.end(); ++j)
            for(k = v.begin(); k!=v.end(); ++k)
                if(eqt((*i-*j).norm(), (*j-*k).norm(), (*k-*i).norm(), 2, 2, 2)&&(*i^*j)**k>0)
                {
                    vec t3 = *i*PHI*PHI+*j*PHI*PHI-*k*PHI*PHI*PHI, t1 = *j*PHI*PHI+*k*PHI*PHI-*i*PHI*PHI*PHI, t2 = *k*PHI*PHI+*i*PHI*PHI-*j*PHI*PHI*PHI;
                    for(q = 0; vs[q]; )
                    {
                        if(vs[q]<48)
                            break;
                        if(vs[q+1]<48)
                        {
                            p = concat(p, mvvec(t3+(t1-t3)*rats[vs[q]-'0'].x+(t2-t3)*rats[vs[q]-'0'].y));
                            q += 2;
                            continue;
                        }
                        if(vs[q+4]<48)
                        {
                            vec2 a = rats[vs[q]-'0'], b = rats[vs[q+1]-'0'], c = rats[vs[q+2]-'0'], d = rats[vs[q+3]-'0'];
                            double idet = 1/((a-b).x*(d-c).y-(a-b).y*(d-c).x);
//fprintf(stderr, "%lf, %lf    %lf, %lf         %lf\n", (a-b).x, (d-c).x, (a-b).y, (d-c).y, idet);
                            vec2 e = vec2(vec2((d-c).y, (d-c).x*-1)*(d-b), vec2((a-b).y*-1, (a-b).x)*(d-b))*idet;
                            vec2 r = (a-b)*e.x+b;
//fprintf(stderr, "%lf, %lf    %lf, %lf         %lf\n", r.x, r.y, t1.x, t1.y, idet);
//fprintf(stderr, "(a-b)={%lf, %lf}, x=%lf, b={%lf, %lf}, e={%lf, %lf}\n(c-d)={%lf, %lf}, y=%lf, d={%lf, %lf}, e={%lf, %lf}\n",
//(a-b).x, (a-b).y, e.x, b.x, b.y, ((a-b)*e.x+b).x, ((a-b)*e.x+b).y,
//(c-d).x, (c-d).y, e.y, d.x, d.y, ((c-d)*e.y+d).x, ((c-d)*e.y+d).y
//);
//fprintf(stderr, "%lf %lf\n", r.x, r.y);
                            p = concat(p, mvvec(t3+(t1-t3)*r.x+(t2-t3)*r.y));
                            av = av+(t3+(t1-t3)*r.x+(t2-t3)*r.y);
                            //p = concat(p, mvvec(vec()));
                            q += 5;
                            continue;
                        }
                        break;
                    }
                }

//printf("%lf %lf %lf\n", av.x, av.y, av.z);
    double r = 0;
    for(i = p.begin(); i!=p.end(); ++i)
//i = p.begin();
        if(r<i->norm())
            r = i->norm();

    for(i = p.begin(); i!=p.end(); ++i)
        *i = *i*(1/r);

    return p;
}

void StellatedIcosahedron(const char *fn, int rs, const char *vs, const char *ls, const char *dls, const char *ts)
{
    vector<vec> v;

    FILE *f;
    f = fopen(fn, "wb");
    fprintf(f, theader, rs);
    printvvec(f, IcosaParse(vs));
    printvvecdottedlines(f, IcosaParse(dls));
    printvveclines(f, IcosaParse(ls));
    fprintf(f, tstartmesh);
    printvvectriangles(f, IcosaParse(ts));
    fprintf(f, tendmesh);
    fprintf(f, tfooter);
    fclose(f);
}

int main()
{
    SmallStellatedDodecahedron();
    GreatStellatedDodecahedron();
    GreatDodecahedron();
    StellatedIcosahedron("GreatIcosahedron.pov", 31234, "0 1 2 0417 1428 2538 ", "0 3 ", "0 0417 0417 1 1 1428 1428 2 2 2538 2538 3 ", "0 1 0417 1 2 1428 2 3 2538 ");
    StellatedIcosahedron("CompoundOfFiveTetrahedra.pov", 22113, "2 2514 1427 2715 1528 ", "2 5 ", "2 2 2514 1427 1427 2715 2715 1528 ", "2 2514 1427 2 2715 1528 ");
    return 0;
}

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell21:15, 19. Dez. 2005Vorschaubild der Version vom 21:15, 19. Dez. 2005853 × 794 (231 KB)CypReplacing missing pixels - cropped too small by one pixel on each edge.
21:30, 17. Dez. 2005Vorschaubild der Version vom 21:30, 17. Dez. 2005851 × 792 (231 KB)CypGreat stellated dodecahedron, rendered with POVRay

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Weitere globale Verwendungen dieser Datei anschauen.

Metadaten