„Quadratischer Variationsprozess“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
→‎Definition bei stetiger Indexmenge: Wesentliche Ergänzung der Definition bei stetiger Indexmenge: für Semimartingale, für adaptierte càdlàg Prozesse und Definition der quadratischen Kovariation. Außerdem: Abschnitt zu Eigenschaften der quadratischen Kovariation in stetiger Zeit erstellt. Alle Angaben aus Protter.
Zeile 11: Zeile 11:


zu einem Martingal wird, der quadratische Variationsprozess von <math> X </math>. Er ist eindeutig bestimmt.<ref> Klenke: ''Wahrscheinlichkeitstheorie.'' 2013, S. 210. </ref>
zu einem Martingal wird, der quadratische Variationsprozess von <math> X </math>. Er ist eindeutig bestimmt.<ref> Klenke: ''Wahrscheinlichkeitstheorie.'' 2013, S. 210. </ref>

== Definition bei stetiger Indexmenge ==

=== Stetige lokale Martingale ===
Gegeben sei ein [[Stetiger Prozess|stetiges]] [[lokales Martingal]] <math> M=(M_t)_{t \geq 0} </math>. Dann heißt der stetige, monoton wachsende und [[adaptierter Prozess|adaptierte Prozess]] <math> \langle M \rangle= (\langle M_t \rangle)_{t \geq 0} </math> mit <math> M_0=0 </math>, mit dem der Prozess
:<math> Y= (M_t^2- \langle M_t \rangle)_{t \geq 0} </math>

zu einem stetigen lokalen Martingal wird, der (vorhersagbare) quadratische Variationsprozess von <math> M </math>. Er ist eindeutig bestimmt.<ref> Klenke: ''Wahrscheinlichkeitstheorie.'' 2013, S. 513. </ref>

Der Prozess wird auch ''Scharfe-Klammer-Prozess'' oder ''Winkelklammer-Prozess'' genannt.

=== Semimartingale ===
Mit Hilfe des [[Stochastische Integration|stochastischen Integrals]] kann die Definition der quadratischen Variation auf [[Semimartingal|Semimartingale]] erweitert werden:

Für ein Semimartingal <math>X</math> mit <math>X_0=0</math> ist die (optionale) quadratische Variation <math>\left[X, X\right]</math> definiert durch<blockquote><math>\left[X,X\right]_t = X_t^2 - 2\int_0^t X_{s-}\mathrm{d}X_s, \quad t\geq 0</math></blockquote>wobei <math>X_{s-}=\lim_{u\to s,u<s}X_u</math> ist. Ist <math>\left[X,X\right]</math> lokal integrierbar, dann ist die (vorhersagbare) quadratische Variation <math>\langle X,X \rangle</math> definiert als der [[Doob-Meyer-Zerlegung#Satz von Rao|Kompensator]] von <math>\left[X,X\right]</math>.

Da die optionale quadratische Variation <math>\left[X,X\right]</math> im Gegensatz zur vorhersagbaren quadratischen Variation <math>\langle X,X \rangle</math> immer existiert, wird bevorzugt ersteres verwendet.

Ist <math>X</math> sogar ein stetiges lokales Martingal, dann ist <math>\int_0^{ \cdot} X_{s-}\mathrm{d}X_s</math> ein stetiges lokales Martingal und folglich ist <math>X^2-\left[X,X \right]</math> ein stetiges lokales Martingal und <math>\left[X, X\right] = \langle X,X\rangle</math>. Somit ist die Definition für Semimartingale konsistent mit der Definition für stetige lokale Martingale.<ref>{{Literatur |Autor=Philipp Protter |Titel=Stochastic Integration and Differential Equations A New Approach |Auflage=2. korrigierte |Verlag=Springer-Verlag |Ort=Berlin / Heidelberg |Datum=1990 |Umfang=302 |ISBN=978-3-662-02619-9 |Seiten=58, 98, 106}}</ref>

=== Adaptierte Càdlàg-Prozesse ===
Für einen adaptierten [[Càdlàg-Funktion|Càdlàg]]-Prozess <math>H</math> ist die quadratische Variation definiert als derjenige adaptierte càdlàg-Prozess <math>\left[H,H\right]</math>, sofern er überhaupt existiert, der für jede Folge reeller Zahlen <math>\left( T_n\right)_n</math> mit <math>\lim_{n\to \infty} T_n= \infty</math> und für jede Folge <math>\left( \pi_n \right)_n</math> von [[Partition eines Intervalls|Partitionen des Intervalls]] <math>[0,T_n]</math> mit <math>\lim_{n\to\infty}\sup_k |t^n_{k+1}-t^n_k| = 0</math> erfüllt, dass<blockquote><math>\sup_{t\in [0,T]} \Big| \left[H,H \right]_t - H_0^2 - \sum_i (H_{t_{i+1}^n\land t}-H_{t_i^n\land t})^2 \Big| \xrightarrow{n\to\infty} 0</math></blockquote>in Wahrscheinlichkeit.<ref>{{Literatur |Autor=Philipp Protter |Titel=Stochastic Integration and Differential Equations A New Approach |Auflage=2. korrigierte |Verlag=Springer-Verlag |Ort=Berlin / Heidelberg |Datum=1990 |Umfang=302 |ISBN=978-3-662-02619-9 |Seiten=215}}</ref>

=== Quadratische Kovariation ===
Seien <math>H,J</math> adaptierte [[Càdlàg-Funktion|Càdlàg]]-Prozesse, dann ist die quadratische Kovariation <math>\left[H,J\right]</math> definiert über die [[Polarisationsformel]]<blockquote><math>\left[H,J\right] := \frac{1}{4}\left(\left[H+J,H+J\right] - \left[H-J,H-J \right] \right)</math></blockquote>Insbesondere ist die quadratische Kovariation eine symmetrische [[Bilinearform]].


== Darstellung ==
== Darstellung ==
Zeile 35: Zeile 60:


== Eigenschaften ==
== Eigenschaften ==

=== Diskrete Indexmenge ===
Aus der zweiten der obigen beiden Darstellungen erhält man durch Bildung des Erwartungswertes direkt
Aus der zweiten der obigen beiden Darstellungen erhält man durch Bildung des Erwartungswertes direkt
:<math> \operatorname{Var} (X_n-X_0)= \operatorname E (\langle X \rangle_n) </math>
:<math> \operatorname{Var} (X_n-X_0)= \operatorname E (\langle X \rangle_n) </math>
Zeile 49: Zeile 76:
für [[Stoppzeit]]en <math> \tau </math>.
für [[Stoppzeit]]en <math> \tau </math>.


== Definition bei stetiger Indexmenge ==
=== Stetige Indexmenge ===
Seien <math>X,Y</math> Semimartingale.
Gegeben sei ein [[Stetiger Prozess|stetiges]] [[lokales Martingal]] <math> M=(M_t)_{t \geq 0} </math>. Dann heißt der stetige, monoton wachsende und [[adaptierter Prozess|adaptierte Prozess]] <math> \langle M \rangle= (\langle M_t \rangle)_{t \geq 0} </math> mit <math> M_0=0 </math>, mit dem der Prozess
:<math> Y= (M_t^2- \langle M_t \rangle)_{t \geq 0} </math>


* <math>\left[X,X\right]</math> ist adaptiert, monoton wachsend und càdlàg.
zu einem stetigen lokalen Martingal wird, der (vorhersagbare) quadratische Variatonsprozess von <math> M </math>. Er ist eindeutig bestimmt.<ref> Klenke: ''Wahrscheinlichkeitstheorie.'' 2013, S. 513. </ref>
* <math>\langle X,Y \rangle</math> ist vorhersagbar und von endlicher [[Variation (Mathematik)|Variation]].

* <math>\left[X,Y\right] _0 =X_0 Y_0</math> und <math>\Delta\left[X,Y\right] = \Delta X\Delta Y</math>, wobei <math>\Delta X_t = X_t - X_{t-}</math> die Strungestelle von <math>X</math> im Punkt <math>t</math> ist.
Der Prozess wird auch ''Scharfe-Klammer-Prozess'' oder ''Winkelklammer-Prozess'' genannt.
* Für jede [[Stoppzeit]] <math>T</math> gilt <math>\left[X^T,Y\right]=\left[X,Y^T\right]=\left[X^T,Y^T\right]=\left[X,Y\right]^T</math>.
* Es gilt die partielle Integration: <math>X_t Y_t = \int_{0+}^t X_{s-}\mathrm{d}Y_s + \int_{0+}^t Y_{s-}\mathrm{d}X_s + \left[X,Y\right] _t</math>.
* Falls <math>X, Y</math> lokale Martingale sind, ist <math>XY-\left[X,Y\right]</math> ein lokales Martingal. Dies folgt unmittelbar aus der partiellen Integration.
* Für jede Folge reeller Zahlen <math>\left( T_n\right)_n</math> mit <math>\lim_{n\to \infty} T_n= \infty</math> und für jede Folge <math>\left( \pi_n \right)_n</math> von [[Partition eines Intervalls|Partitionen des Intervalls]] <math>[0,T_n]</math> mit <math>\lim_{n\to\infty}\sup_k |t^n_{k+1}-t^n_k| = 0</math> gilt
<math>\sup_{t\in [0,T]} \Big| \left[X,Y \right]_t - X_0 Y_0 - \sum_i (X_{t_{i+1}^n\land t}-X_{t_i^n\land t})(Y_{t_{i+1}^n\land t}-Y_{t_i^n\land t}) \Big| \xrightarrow{n\to\infty} 0</math> in Wahrscheinlichkeit.


Die letzte Eigenschaft der quadratischen (Ko-)Variation für Semimartingale rechtfertigt die Definition der quadratischen Variation für allgemeine adaptierte Càdlàg-Prozesse.<ref>{{Literatur |Autor=Philipp Protter |Titel=Stochastic Integration and Differential Equations A New Approach |Auflage=2. korrigierte |Verlag=Springer-Verlag |Ort=Berlin / Heidelberg |Datum=1990 |ISBN=978-3-662-02619-9 |Seiten=59, 61, 97}}</ref>
=== Nicht-Stetigkeit ===
Falls <math>M</math> nicht-stetig ist, so unterscheidet man zwischen dem [[Optionale σ-Algebra|optionalen]] <math>[M]_t</math> und dem vorhersagbaren <math>\langle M\rangle_t</math>. Damit letzteres existiert, muss <math>M</math> zusätzlich quadratintegrierbar sein. Die Existenz folgt dann aus dem Satz der [[Doob-Meyer-Zerlegung]].


== Literatur ==
== Literatur ==

Version vom 14. Oktober 2023, 17:18 Uhr

Ein (quadratischer) Variationsprozess ist ein spezieller stochastischer Prozess in der Wahrscheinlichkeitstheorie, einem Teilgebiet der Mathematik. Er wird aus einem weiteren Prozess (einem Martingal oder einem lokalen Martingal) gewonnen und erlaubt im Falle diskreter Indexmengen beispielsweise äquivalente Formulierungen des Martingalkonvergenzsatzes. Im zeitstetigen Fall entsprechen die Pfade des quadratischen Variationsprozesses fast sicher der quadratischen Variation der Pfade des zugrundeliegenden Prozesses.

In der stochastischen Analysis treten quadratische Variationsprozesse als Integratoren im Ito-Integral auf.

Definition bei diskreter Indexmenge

Gegeben sei eine Filtrierung und sei ein quadratintegrierbares Martingal.

Dann heißt derjenige vorhersagbare Prozess , durch den der stochastische Prozess

zu einem Martingal wird, der quadratische Variationsprozess von . Er ist eindeutig bestimmt.[1]

Definition bei stetiger Indexmenge

Stetige lokale Martingale

Gegeben sei ein stetiges lokales Martingal . Dann heißt der stetige, monoton wachsende und adaptierte Prozess mit , mit dem der Prozess

zu einem stetigen lokalen Martingal wird, der (vorhersagbare) quadratische Variationsprozess von . Er ist eindeutig bestimmt.[2]

Der Prozess wird auch Scharfe-Klammer-Prozess oder Winkelklammer-Prozess genannt.

Semimartingale

Mit Hilfe des stochastischen Integrals kann die Definition der quadratischen Variation auf Semimartingale erweitert werden:

Für ein Semimartingal mit ist die (optionale) quadratische Variation definiert durch

wobei ist. Ist lokal integrierbar, dann ist die (vorhersagbare) quadratische Variation definiert als der Kompensator von .

Da die optionale quadratische Variation im Gegensatz zur vorhersagbaren quadratischen Variation immer existiert, wird bevorzugt ersteres verwendet.

Ist sogar ein stetiges lokales Martingal, dann ist ein stetiges lokales Martingal und folglich ist ein stetiges lokales Martingal und . Somit ist die Definition für Semimartingale konsistent mit der Definition für stetige lokale Martingale.[3]

Adaptierte Càdlàg-Prozesse

Für einen adaptierten Càdlàg-Prozess ist die quadratische Variation definiert als derjenige adaptierte càdlàg-Prozess , sofern er überhaupt existiert, der für jede Folge reeller Zahlen mit und für jede Folge von Partitionen des Intervalls mit erfüllt, dass

in Wahrscheinlichkeit.[4]

Quadratische Kovariation

Seien adaptierte Càdlàg-Prozesse, dann ist die quadratische Kovariation definiert über die Polarisationsformel

Insbesondere ist die quadratische Kovariation eine symmetrische Bilinearform.

Darstellung

Aus der Doob-Zerlegung folgt direkt

,

woraus sich die Darstellung

.

herleiten lässt.

Beispiel

Gegeben sei eine Folge von unabhängig identisch verteilten Zufallsvariablen mit und .

Dann ist

ein Martingal bezüglich der kanonischen Filtrierung und quadratintegrierbar.

Mittels der zweiten der beiden obigen Darstellungen und sowie folgt

,

nach den Rechenregeln für bedingte Erwartungswerte, da die nach Voraussetzung unabhängig sind. In diesem Fall ist der quadratische Variationsprozess rein deterministisch. Im Allgemeinen ist dies nicht der Fall.

Eigenschaften

Diskrete Indexmenge

Aus der zweiten der obigen beiden Darstellungen erhält man durch Bildung des Erwartungswertes direkt

Da aber nach dem Martingalkonvergenzsatz gilt, dass ein Martingal genau dann fast sicher und im quadratischen Mittel konvergiert, wenn es im quadratischen Mittel beschränkt ist, folgt die Aussage

Es ist genau dann, wenn im quadratischen Mittel konvergiert.[5]

Etwas schwächer gilt noch

Ist fast sicher, so konvergiert fast sicher.[6]

Außerdem ist der quadratische Variationsprozess eines gestoppten Prozesses der gestoppte quadratische Variationsprozess, es gilt somit die Vertauschungsrelation

für Stoppzeiten .

Stetige Indexmenge

Seien Semimartingale.

  • ist adaptiert, monoton wachsend und càdlàg.
  • ist vorhersagbar und von endlicher Variation.
  • und , wobei die Strungestelle von im Punkt ist.
  • Für jede Stoppzeit gilt .
  • Es gilt die partielle Integration: .
  • Falls lokale Martingale sind, ist ein lokales Martingal. Dies folgt unmittelbar aus der partiellen Integration.
  • Für jede Folge reeller Zahlen mit und für jede Folge von Partitionen des Intervalls mit gilt

in Wahrscheinlichkeit.

Die letzte Eigenschaft der quadratischen (Ko-)Variation für Semimartingale rechtfertigt die Definition der quadratischen Variation für allgemeine adaptierte Càdlàg-Prozesse.[7]

Literatur

Einzelnachweise

  1. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 210.
  2. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 513.
  3. Philipp Protter: Stochastic Integration and Differential Equations A New Approach. 2. korrigierte Auflage. Springer-Verlag, Berlin / Heidelberg 1990, ISBN 978-3-662-02619-9, S. 58, 98, 106 (302 S.).
  4. Philipp Protter: Stochastic Integration and Differential Equations A New Approach. 2. korrigierte Auflage. Springer-Verlag, Berlin / Heidelberg 1990, ISBN 978-3-662-02619-9, S. 215 (302 S.).
  5. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 275.
  6. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 227.
  7. Philipp Protter: Stochastic Integration and Differential Equations A New Approach. 2. korrigierte Auflage. Springer-Verlag, Berlin / Heidelberg 1990, ISBN 978-3-662-02619-9, S. 59, 61, 97.