Analysis

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 24. Januar 2008 um 20:29 Uhr durch BOTarate (Diskussion | Beiträge) (Bot: Ergänze: an:Analís matematico). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Die Analysis [aˈnalyzɪs] (gr. ανάλυσις análysis „Auflösung“, altgr. ἀναλύειν ánalýein „auflösen“) ist ein Teilgebiet der Mathematik, dessen Grundlagen von Gottfried Wilhelm Leibniz und Isaac Newton unabhängig voneinander entwickelt wurden. Die grundlegende Analysis befasst sich mit Grenzwerten von Folgen und Reihen sowie mit Funktionen reeller Zahlen und deren Stetigkeit, Differenzierbarkeit und Integration. Die Methoden der Analysis sind in allen Natur- und Ingenieurwissenschaften von großer Bedeutung.

Die Verallgemeinerung des Funktionsbegriffes in der Analysis auf Funktionen mit Definitions- und Wertebereich in den komplexen Zahlen ist Bestandteil der Funktionentheorie.


Differentialrechnung

Hauptartikel: Differentialrechnung

Bei einer linearen Funktion bzw. einer Geraden

heißt m die Steigung und c der y-Achsen-Abschnitt oder Ordinatenabschnitt der Geraden. Hat man nur 2 Punkte und auf einer Geraden, so kann die Steigung berechnet werden durch

.

Bei nicht linearen Funktionen wie z.B. kann die Steigung so nicht mehr berechnet werden, da diese Kurven beschreiben und somit keine Geraden sind. Jedoch kann man an einen Punkt eine Tangente legen, die wieder eine Gerade darstellt. Die Frage ist nun, wie man die Steigung einer solchen Tangente an einer Stelle berechnen kann. Wählt man eine Stelle ganz nahe bei und legt eine Gerade durch die Punkte und , so ist die Steigung dieser Sekante nahezu die Steigung der Tangente. Die Steigung der Sekante ist (s.o.)

.

Diesen Quotienten nennt man den Differenzenquotienten oder mittlere Änderungsrate. Wenn wir nun die Stelle immer weiter an annähern, so erhalten wir per Differenzenquotient die Steigung der Tangente. Wir schreiben

und nennen dies die Ableitung oder den Differentialquotienten von f in . Der Ausdruck bedeutet, dass x immer weiter an angenähert wird, bzw. dass der Abstand zwischen x und beliebig klein wird. Wir sagen auch: „x geht gegen “. Die Bezeichnung steht für Limes.

ist der Grenzwert des Differenzenquotienten.

Es gibt auch Fälle, in denen dieser Grenzwert nicht existiert. Deswegen hat man den Begriff Differenzierbarkeit eingeführt. Eine Funktion f heißt differenzierbar an der Stelle , wenn der Grenzwert existiert.

Integralrechnung

Hauptartikel: Integralrechnung

Die Integralrechnung befasst sich anschaulich mit der Berechnung von Flächen unter Funktionsgraphen. Diese Fläche kann durch eine Summe von Teilflächen approximiert werden und geht im Grenzwert in das Integral über.

Die obige Folge konvergiert, falls f gewisse Bedingungen (wie z. B. Stetigkeit) erfüllt. Diese anschauliche Darstellung (Approximation mittels Ober- und Untersummen) entspricht dem so genannten Riemann-Integral, das in der Schule gelehrt wird.

In der so genannten Höheren Analysis werden darüber hinaus weitere Integralbegriffe, wie z. B. das Lebesgue-Integral betrachtet.

Hauptsatz der Analysis

Differentialrechnung und Integralrechnung verhalten sich nach dem Hauptsatz der Analysis in folgender Weise „invers“ zueinander.

Wenn f eine auf einem kompakten Intervall stetige reelle Funktion ist, so gilt für :

und, falls f zusätzlich auf gleichmäßig stetig differenzierbar ist,

Deshalb wird die Menge aller Stammfunktionen einer Funktion auch als unbestimmtes Integral bezeichnet und durch symbolisiert.

Viele Lehrbücher unterscheiden zwischen Analysis in einer und Analysis in mehreren Dimensionen. Diese Differenzierung berührt die grundlegenden Konzepte nicht, allerdings gibt es in mehreren Dimensionen eine reichere mathematische Vielfalt.

Weitere Gebiete der Analysis

Literatur

Weblinks

Wikibooks: Analysis – Lern- und Lehrmaterialien
Wiktionary: Analysis – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen