Automatisches Differenzieren

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das automatische Differenzieren bzw. Differenzieren von Algorithmen ist ein Verfahren der Informatik und angewandten Mathematik. Zu einer Funktion in mehreren Variablen, die als Prozedur in einer Programmiersprache oder als Berechnungsgraph gegeben ist, wird eine erweiterte Prozedur erzeugt, die sowohl die Funktion als auch einen oder beliebig viele Gradienten, bis hin zur vollen Jacobi-Matrix, auswertet. Wenn das Ausgangsprogramm Schleifen enthält, darf die Anzahl der Schleifendurchläufe nicht von den unabhängigen Variablen abhängig sein.

Diese Ableitungen werden z. B. für das Lösen von nichtlinearen Gleichungssystemen mittels Newton-Verfahren und für Methoden der nichtlinearen Optimierung benötigt.

Das wichtigste Hilfsmittel dabei ist die Kettenregel sowie die Tatsache, dass zu den im Computer verfügbaren Elementarfunktionen wie sin, cos, exp, log die Ableitungen bekannt und genauso exakt berechenbar sind. Damit wird der Aufwand zur Berechnung der Ableitungen proportional (mit kleinem Faktor) zum Aufwand der Auswertung der Ausgangsfunktion.

Berechnung von Ableitungen[Bearbeiten]

Aufgabe: Gegeben sei eine Funktion

f\colon\R^n \to \R^m, x \mapsto y

Gesucht ist der Code/die Funktion für Richtungsableitungen oder die volle Jacobi-Matrix

\frac{\partial f}{\partial x}=\left[ \tfrac{\partial y_i}{\partial x_j} \right]_{i=1..m, j=1..n}

Verschiedene Ansätze hierfür sind:

  1. Versuche, eine geschlossene, analytische Form für f zu finden und bestimme \tfrac{\partial f}{ \partial x} durch Differentiation „auf Papier“. Implementiere dann den Code für \tfrac{\partial f}{\partial x} von Hand.
    Problem: Zu schwierig, zeitaufwendig, fehleranfällig
  2. Erzeuge die Berechnungsvorschrift für f in einem Computeralgebrasystem und wende die dort zur Verfügung stehenden Mittel zum symbolischen Differenzieren an. Exportiere dann den Code für \tfrac{\partial f }{ \partial x} in seine eigentliche Umgebung.
    Problem: Zeitaufwendig, skaliert nicht, zu kompliziert für größere Programme/Funktionen
  3. Bestimme eine numerische Approximation der Ableitung. Es gilt für kleines h
    \tfrac{\partial f_k}{\partial x} = \lim_{h\to 0} \frac{f_k(x+h)-f_k(x)}{h}  \approx \frac{f_k(x+h)-f_k(x)}{h}.
    Problem: Wie findet man eine optimale Schrittweite h?
  4. Stelle die Berechnungsvorschrift als Berechnungsbaum, d. h. als arithmetisches Netzwerk, dar und erweitere diesen unter Verwendung der Kettenregel zu einem Berechnungsbaum für Funktionswert und Ableitung \tfrac{\partial f}{\partial x}.

Die Idee der automatischen Differentiation (AD)[Bearbeiten]

Jedes Programm, das eine Funktion f(x):\R^n \to \R^m, x \mapsto y auswertet, kann als eine Abfolge von Zwischenschritten beschrieben werden, in denen Zwischenergebnisse auf elementare Weise umgewandelt werden. Man kann sich dies so vorstellen, dass es eine (potentiell unendliche) Folge von Zwischenwerten (t_1,t_2,t_3,\dots) gibt und Funktionen q_k:\R^{n+k-1}\to\R, die aber nur von ein oder zwei Variablen wirklich abhängen. Die Funktion wird ausgewertet, indem am Anfang (t_1,t_2,\dots,t_n)=(x_1,x_2,\dots,x_n) gesetzt wird und nacheinander


\begin{align}
t_{n+1}=&q_1(t_1,\dots,t_n)\\
t_{n+2}=&q_2(t_1,\dots,t_n,t_{n+1})\\
\dots&\\
t_{n+K}=&q_K(t_1,\dots,t_n,t_{n+1},\dots,t_{K-1})
\end{align}

bestimmt wird. Dies kann so eingerichtet werden, dass die Funktionswerte von f sich in den zuletzt ausgewerteten Zwischenergebnissen befinden, d. h. am Ende wird noch (y_1,\dots,y_m)=(t_{K-m+1},\dots,t_K) zugeordnet.

AD beschreibt eine Menge von Verfahren, deren Ziel es ist, ein neues Programm zu erzeugen, das die Jacobimatrix von f, J=\tfrac{\partial f}{\partial x}\in \mathbb{R}^{m\times n} auswertet. Die Eingabevariablen x heißen unabhängige Variablen, die Ausgabevariable(n) y abhängige Variablen. Bei AD unterscheidet man mindestens zwei verschiedene Modi.

  1. Vorwärtsmodus (FM engl. Forward Mode)
  2. Rückwärtsmodus (BM engl. Backward Mode)

Vorwärtsmodus[Bearbeiten]

Im Vorwärtsmodus berechnet man das Matrizenprodukt

JS, ~S \in \mathbb{R}^{n \times p}

der Jacobi-Matrix mit einer beliebigen Matrix S (Seedmatrix), ohne vorher die Komponenten der Jacobi-Matrix zu bestimmen.

Beispiel 1[Bearbeiten]

p=n \quad \text{und} \quad S = I_{n} \Rightarrow AD berechnet J

Im Vorwärtsmodus werden Richtungsableitungen entlang des Kontrollflusses der Berechnung von f transportiert. Für jede skalare Variable v wird in dem AD-erzeugten Code ein Vektor Dv erzeugt, dessen i-te Komponente die Richtungsableitung entlang der i-ten unabhängigen Variablen enthält.

Beispiel 2[Bearbeiten]

Berechne eine Funktion

 
\begin{align}
 & [ y_1 , y_2 , b ] = f\left(x_1, x_2, a\right) \left\{\right.\\
 & \quad b=x_1+x_2 \\
 & \quad y_1=a \cdot \sin(b) \\
 & \quad y_2=b \cdot y_1 \\
 & \left.\right\}
\end{align}
  

Eine automatische Differentiation im Vorwärtsmodus hätte eine Funktion

 [y_1, y_2, Dy_1, Dy_2, b ] = f_{AD}\left( x_1, x_2, Dx_1, Dx_2, a\right)

zum Ergebnis:

 \begin{align}
 & [y_1, y_2, Dy_1, Dy_2, b ] = f_{AD}\left( x_1, x_2, Dx_1, Dx_2, a\right) \left\{\right. \\
 & \quad b=x_1+x_2 \\
 & \quad Db=Dx_1+ Dx_2 \\
 & \quad y_1=a \cdot \sin(b) \\
 & \quad Dy_1=a\cdot \cos(b) \cdot Db \\
 & \quad y_2 = b \cdot y_1 \\
 & \quad Dy_2 = Db \cdot y_1 + b \cdot Dy_1 \\
 & \left.\right\}
\end{align}
  

Rückwärtsmodus[Bearbeiten]

Der Rückwärtsmodus besteht aus zwei Phasen.

  1. Das Originalprogramm wird ausgeführt und gewisse Daten werden abgespeichert.
  2. Das Originalprogramm wird rückwärts ausgeführt. Dabei werden Richtungsableitungen transportiert und es werden die Daten aus Phase 1 verwendet.

In Phase 2 wird für jede skalare Variable v ein Vektor a_v eingeführt. Dieser Vektor enthält in der i-ten Komponente die i-te Richtungsableitung (in Richtung von v). Die Saatmatrix befindet sich in a_y. Im Rückwärtsmodus erhält man als Ergebnis ein Produkt

SJ, S \in \R^{p\times m}

Beispiel 1[Bearbeiten]

p=m \quad\text{und}\quad S=I_{m\times m} \implies AD berechnet J

Beispiel 2[Bearbeiten]

Für jede Rechenvorschriftszeile s=g\left(u,v\right) werden die Ableitungen von u und v auf folgendem Wege von s ergänzt:

\begin{align}
a\_u & =a\_u+\frac{\partial g}{\partial u} a\_s \\
a\_v & =a\_v+\frac{\partial g}{\partial v} a\_s
\end{align}

Gesucht sind die x_1- und x_2-Ableitungen von y_2. Diese werden jeweils als a\_x_1 und a\_x_2 bezeichnet. Der Wert a\_y_2 wird mit 1 initialisiert, alle anderen a\__{\ldots}-Werte werden mit 0 initialisiert.


\begin{align}
b      & =x_1+x_2 &      & (1)\\
y_1    & =a\cdot\sin(b)& & (2)\\
y_2    & =b\cdot y_1&    & (3)\\
\text{ aus (3) :}& \\
a\_b   & =a\_b+y_1\cdot a\_y_2 \\
a\_y_1 & =a\_y_1+b\cdot a\_y_2 \\
\text{ aus (2) :}&\\
a\_b   & =a\_b+a\cdot\cos(b)\cdot a\_y_1 \\
\text{ aus (1) :}& \\
a\_x_1 & =a\_x_1+1 \cdot a\_b \\
a\_x_2 & =a\_x_2+1 \cdot a\_b
\end{align}

Effizienzbetrachtungen[Bearbeiten]

Die Effizienz von AD-Algorithmen hängt vom Modus und dem Parameter p ab. Die Wahl des Modus und des Parameters p hängt davon ab, wofür die Jacobimatrix berechnet wird. Es gelte

T_f die Zeit f zu berechnen
M_f der Speicherbedarf dieser Rechnung
T_{JS} die Zeit f und JS zu berechnen
M_{JS} der Speicherbedarf dieser Rechnung
T_{SJ} die Zeit f und SJ zu berechnen
M_{SJ} der Speicherbedarf dieser Rechnung

Für die beiden vorgestellten Modi gilt

  1. Vorwärtsmodus:  {T_{JS} \over T_f} \approx p, {M_{JS} \over M_f} \approx p
  2. Rückwärtsmodus:  {T_{SJ} \over T_f} \approx p, {M_{SJ} \over M_f} \approx T_f

Die Berechnung als Kette von Berechnungen[Bearbeiten]

Gegeben: s=g\left(u,v\right), Frage: Wie verändert sich die Ableitung von s während der zweiten Phase, um die Ableitungen von u und v zu erhalten?

  a\_u=a\_u+{\partial g\over \partial u} a\_s
  a\_v=a\_v+{\partial g\over \partial v} a\_s

f(x) wird als Sequenz von Programmen interpretiert. Im Beispiel „Optimierung eines Tragflügels“ umfasst die Berechnung die folgenden Schritte.

  • Überlagerung des Tragflügels mit sogenannten „Mode-Funktionen“
A\left( x \right) = A_0 + \sum_{j=1}^n x_j A_j, n=8, f_1:\mathbb{R}^8 \rightarrow \mathbb{R}^{200}
  • Berechnung eines Gitters, das um den Tragflügel herum gelegt wird
G\left( A \right): \mathbb{R}^{200} \leftarrow \mathbb{R}^{17428}
  • Lösung der Navier-Stokes-Gleichungen auf dem Gitter und Berechnung der Integrals der selbigen.
f\left( G \right) : \mathbb{R}^{17428} \rightarrow \mathbb{R}
.

Insgesamt ergibt sich die Funktion

  f=f\left( G \left( A \left( x \right) \right) \right) \rightarrow {\partial f \over \partial x} = {\partial f \over \partial G}{\partial G \over \partial A }{\partial A \over \partial x}

Mit einem naiven Ansatz würde man drei Matrizen {\partial f \over \partial G},{\partial G \over \partial A},{\partial A \over \partial x} berechnen und dann zwei Matrizenmultiplikationen durchführen. Der Nachteil des Vorwärtsmodus ist allerdings:

  T_{{\partial f \over \partial G}\cdot S} \approx 17428 \cdot T_{f\left( G \right)}

im Rückwärtsmodus würde analog

  T_{S \cdot {\partial f \over \partial G}} \approx 17428 \cdot T_{f\left( G \right)}

gelten. Ein besserer Ansatz ist, das Ergebnis einer Berechnung jeweils als Saatmatrix der folgenden einzusetzen.

  1. Wähle  I_{8x8} \in \mathbb{R}^{8x8} als Saatmatrix der ersten Rechnung
  2. Das Ergebnis der ersten Rechnung als Saatmatrix der zweiten Rechnung
  3. Das Ergebnis der zweiten Rechnung als Saatmatrix der dritten Rechnung

also

  1.  \frac{\partial A}{\partial x} I_{8x8} \in \mathbb{R}^{200x8}
  2.  \frac{\partial G}{\partial A} \frac{\partial A}{\partial x} \in \mathbb{R}^{17428x8}
  3.  \frac{\partial f}{\partial G} \frac{\partial G}{\partial x} \in \mathbb{R}^{1x8}

Da die Zeilenzahl jeder Matrix 8 (p=8) ist erhöht sich der Zeit- und Speicherbedarf ebenfalls um höchstens 8.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]