Gromovs Satz über Betti-Zahlen

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Mathematik ist Gromovs Satz über Betti-Zahlen ein Lehrsatz der globalen riemannschen Geometrie von Michail Leonidowitsch Gromow.

Satz[Bearbeiten | Quelltext bearbeiten]

Sei eine -dimensionale vollständige riemannsche Mannigfaltigkeit nichtnegativer Schnittkrümmung. Dann gilt für die Betti-Zahlen (mit Koeffizienten in einem beliebigen Körper ):

.

(Gromovs ursprüngliche Abschätzung war doppelt-exponentiell[1], die obige Verbesserung geht auf Abresch[2] zurück. Die vermutete optimale rechte Seite ist .)

Allgemeiner beweist Gromov, dass für eine -dimensionale geschlossene riemannsche Mannigfaltigkeit mit Schnittkrümmung und Durchmesser die Ungleichung

für eine Konstante gilt.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. (online)
  2. U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II. Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 475–502.