Irisin

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 29. Juni 2016 um 15:07 Uhr durch Sonabi (Diskussion | Beiträge) (HC: Ergänze Kategorie:Codiert auf Chromosom 1 (Mensch)). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Irisin
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 112 Aminosäuren
Präkursor FNDC5 (181 aa)
Isoformen 4 (unbestätigt)
Bezeichner
Gen-Name FNDC5
Externe IDs
Vorkommen
Homologie-Familie Hovergen
Übergeordnetes Taxon Wirbeltiere[1]

Irisin ist ein körpereigener Botenstoff (Zytokin) in Wirbeltieren, der von Muskeln freigesetzt wird, und zählt daher zu den Myokinen. Er wurde 2012 von einem Forscherteam der Harvard University in Boston beschrieben und nach der griechischen Götterbotin Iris benannt.[2]

Bei körperlicher Aktivität werden in den Muskelzellen einzelne Proteine vermehrt gebildet, darunter das Protein FNDC5 (fibronectin type III domain containing protein 5). FNDC5 ist ein Membranprotein, dessen extrazelluläre Domäne nach dem Transport zur Zellmembran proteolytisch aktiviert und als Irisin sezerniert wird. Ebenso finden sich in Muskelzellen erhöhte FNDC5-Spiegel bei erhöhter Expression von PGC-1α (proliferator-activated receptor γ coactivator 1α), das bedeutsam für die Homöostase im Blutzucker-, Fettstoffwechsel- und Energie-Haushalt ist. Transgene Mäuse mit dauerhafter PGC-1α-Bildung in ihren Muskelzellen waren resistent gegen alterabhängiges Übergewicht und Diabetes mellitus und hatten eine höhere Lebenserwartung.[3] Diese Wirkung des PGC-1α erfolgt u.a. über den Botenstoff Irisin.

Irisin löst die Transformation weißer Fettzellen in solche mit einem Phänotyp brauner Fettzellen aus ("brown-in-white" oder "brite" Fettzellen), mit vermehrter Expression des für braune Fettzellen typischen Protein UCP1 (uncoupling protein 1, auch Thermogenin genannt). Die vermehrte Expression dieses Proteins in Fettzellen führt zu einer vermehrten Energiefreisetzung und Wärmeerzeugung und damit auch zu einem leichten Gewichtsverlust, einem vermehrten Gesamtenergiebedarf und einer verbesserten Glukosetoleranz.

Die Irisin-Proteine der Maus und des Menschen sind identisch. Beim Menschen stieg der Irisin-Spiegel nach zehn Wochen regelmäßiger körperlicher Aktivität auf das Doppelte. Es wird bereits über eine Irisin-Therapie in Form einer exercise pill spekuliert.[4] Eine deutsche Studie von 2013 stellt die Ergebnisse der amerikanischen Studie in Frage, die stark erhöhten Irisin-Spiegel bei Sportlern seien eher auf eine Veränderung der Blutproben während der Lagerung zurückzuführen. Zumindest zeigt die deutsche Studie mit einer größeren Zahl von Probanden keine statistisch signifikanten Veränderungen von Irisin durch sportliche Betätigung im Vergleich zu einer Kontrollgruppe.[5]

Eine 2015 publizierte Studie, die den Western Blot zum Irisin-Nachweis einsetzte, legt nahe, dass bisherige, auf dem ELISA basierende Untersuchungen zu falsch-positiven Ergebnissen führten, und Irisin beim Menschen und untersuchten Nutztieren keine physiologische Bedeutung hat.[6] Dieser Befund deckt sich zumindest teilweise mit einer nachfolgenden Metaanalyse, in der bisherige Studien systematisch miteinander verglichen und ausgewertet wurden. Während randomisierte kontrollierte Studien hier eher eine tendenzielle Abnahme der Irisin-Werte durch regelmäßige sportliche Betätigung nahelegten, wiesen nicht-randomisierte Studien ein uneinheitliches Bild auf.[7]

Eine im August 2015 publizierte Studie bestätigte die Existenz von Irisin mittels Tandem-Massenspektrometrie.[8]

Quellen

  1. Orthologe bei eggNOG
  2. P. Boström, J. Wu, M. P. Jedrychowski, A. Korde, L. Ye, J. C. Lo, K. A. Rasbach, E. A. Boström, J. H. Choi, J. Z. Long, S. Kajimura, M. C. Zingaretti, B. F. Vind, H. Tu, S. Cinti, K. Højlund, S. P. Gygi, B. M. Spiegelman: A PCG1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 11. Januar 2012; Band 481 (7382): Seiten 463 - 468.
  3. T. Wenz, S. G. Rossi, R. L. Rotundo, B. M. Spiegelman, C. T. Moraes: Increased PCG1-α expression protects form sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 2009; Band 106: Seiten 20405–20410.
  4. Bente Klarlund Pedersen: A muscular twist on the fate of fat. New England Journal of Medicine 19. April 2012; Band 366, Seiten 1544–1545.
  5. Anne Hecksteden, Melissa Wegmann, Anke Steffen, Jochen Kraushaar, Arne Morsch, Sandra Ruppenthal, Lars Kaestner, Tim Meyer: Irisin and exercise training in humans - Results from a randomized controlled training trial. In: BMC Medicine. 11, 2013, S. 235, doi:10.1186/1741-7015-11-235.
  6. E. Albrecht, F. Norheim, B. Thiede, T. Holen, T. Ohashi, L. Scherin, S. Lee, J. Brenmoehl, S. Thomas, CA. Drevon, HP. Erickson, S. Maak: Irisin – a myth rather than an exercise-inducible myokine. Sci Rep 5, 8889 (2015), doi:10.1038/srep08889
  7. S. Qiu, X. Cai, Z. Sun, U. Schumann, M. Zügel, J. M. Steinacker: Chronic Exercise Training and Circulating Irisin in Adults: A Meta-Analysis. In: Sports medicine (Auckland, N.Z.). Band 45, Nummer 11, November 2015, S. 1577–1588, doi:10.1007/s40279-014-0293-4, PMID 26392122.
  8. Jedrychowski, Mark P., Christiane D. Wrann, Joao A. Paulo, Kaitlyn K. Gerber, John Szpyt, Matthew M. Robinson, K. Sreekumaran Nair, Steven P. Gygi, and Bruce M. Spiegelman: Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry. Cell Metabolism. 22, 2015, S. 734–740. doi:10.1016/j.cmet.2015.08.001