Wiener-Wurst
Zur Navigation springen
Zur Suche springen
Die Wiener-Wurst bezeichnet in der Mathematik einen stochastischen Prozess, der eine -Umgebung der brownschen Bewegung bzw. des Wienerprozesses ist.[1]
Die Wiener-Wurst ist nach Norbert Wiener benannt.
Wiener-Wurst
[Bearbeiten | Quelltext bearbeiten]Sei ein -dimensionaler Standard-Wienerprozess. Die Wiener-Wurst ist der durch den Radius und die -Umgebung induzierte Prozess
Resultate
[Bearbeiten | Quelltext bearbeiten]Volumen der Wiener-Wurst
[Bearbeiten | Quelltext bearbeiten]Sei das Lebesgue-Maß der Wiener-Wurst, dann gilt
wobei
unabhängig von und ist. bezeichnet den kleinsten Eigenwert des Dirichletproblems auf dem Einheitsball in ( ist der Laplace-Operator) und ist das Volumen des -dimensionalen Einheitsballes. Das Resultat wurde von Monroe D. Donsker und S. R. Srinivasa Varadhan mit Hilfe der Variationsrechnung hergeleitet.[2]
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Erwin Bolthausen: On the Volume of the Wiener Sausage. In: Institute of Mathematical Statistics (Hrsg.): The Annals of Probability. Band 18, Nr. 4, 1989, S. 1576–1582, doi:10.1214/aop/1176990633.
- ↑ Monroe D. Donsker und S. R. Srinivasa Varadhan: Asymptotics for the wiener sausage. In: Communications on Pure and Applied Mathematics. Band 28, Nr. 4, 1975, S. 525–565, doi:10.1002/cpa.3160280406.