Z-DNA

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Animierte Struktur der Z-DNA.
Seitliche Ansicht von A-, B-, und Z-DNA.

Z-DNA ist eine von verschiedenen möglichen Strukturformen der DNA. Es handelt sich dabei um eine linksgängige Doppelhelix (im Gegensatz zu der in der Natur üblichen B-Form, welche eine rechtsgängige Helix bildet). Vermutlich ist die Z-DNA zusammen mit der A- und der B-DNA eine der drei biologisch aktiven DNA-Formen.

Geschichte[Bearbeiten]

Mit dem Zusammenhang zwischen Z-DNA und B-DNA beschäftigten sich Pohl und Jovin[1] in frühen Arbeiten. Sie konnten zeigen, dass der Circulardichroismus, kurz CD, von poly(dG-dC) unter Verwendung von 4 M NaCl-Lösung beinahe vollständig umkehrbar war. Die Vermutung, dass die Ursache dafür eine Umwandlung von B-DNA nach Z-DNA war, wurde später durch Ramanspektroskopie von Z-DNA Kristallen in der Lösung belegt.[2] Die Z-DNA selbst wurde im Jahr 1979 als erste kristalline DNA-Struktur von Alexander Rich, Andrew Wang und Mitarbeitern am MIT entdeckt[3] (siehe Röntgenbeugung). Jedoch wurde erst im Jahr 2005 über eine Kristallstruktur berichtet, welche Z-DNA direkt in einer Verbindung mit B-DNA zeigt und so Hinweise auf eine biologische Aktivität von Z-DNA liefert.[4]

Struktur[Bearbeiten]

Der Name Z-DNA leitet sich vom zickzackartigen Verlauf des Zucker-Phosphat-Rückgrates ab. Die Struktur ist aber im Vergleich zu der rechtsgängigen B-DNA sehr verschieden. Denn die Z-DNA ist linksgängig und hat eine Struktur, die sich alle zwei Basenpaare wiederholt (Dimere). Allerdings ist die Z-DNA eine metastabile Konformation der DNA und wird nur unter bestimmten Umständen eingenommen (wie z. B. alternierende Pyrimidine/Purine, hoher Salzkonzentration oder DNA supercoiling).

Funktion[Bearbeiten]

Es wird vermutet, dass Z-DNA u. a. eine Rolle während der DNA Transkription spielt, wenn besonders viel supercoiled DNA vorliegt.[4] Außerdem wurde beobachtet, dass das vermutliche Vorliegen von Z-DNA mit Transkriptionsaktivität zusammenfällt und es wurde postuliert, dass Z-DNA bei der Regulation der Transkription eine Rolle spielt.[5]

Strukturinformationen der drei DNA-Formen, die biologisch relevant sein könnten
(B-DNA ist die in der belebten Natur häufigste Form)
Strukturmerkmal A-DNA B-DNA Z-DNA
helikaler Drehsinn rechts rechts links
Durchmesser ≈26 Å ≈20 Å ≈18 Å
Basenpaare pro helikale Windung 11,6 10,4…10,6 12 (6 Dimere)
Helikale Windung je Basenpaar (twist) 31° 36° 60° (pro Dimer)
Ganghöhe (Anstieg pro Windung) 34 Å 34 Å 44 Å
Anstieg pro Base 2,9 Å 3,4 Å 7,4 Å (pro Dimer)
Neigungswinkel der Basenpaare zur Achse 20°
Große Furche eng und tief breit und tief flach
Kleine Furche breit und flach eng und tief eng und tief
Zuckerkonformation C3'-endo C2'-endo Pyrimidine: C2'-endo
Purine: C3'-endo
Glykosidische Bindung anti anti Pyrimidine: anti
Purine: syn

Literatur[Bearbeiten]

  •  Donald Voet, Judith G. Voet: Biochemistry. 4. Auflage. John Wiley & Sons, Hoboken 2011, ISBN 9780470570951.

Weblinks[Bearbeiten]

ChemgaPedia sehr schöne Bilder

Quellen[Bearbeiten]

  1.  F. M. Pohl, T. M. Jovin: Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). In: Journal of Molecular Biology. 67, Nr. 3, 1972, S. 375–396, PMID 5045303.
  2.  T. J. Thamann, R. C. Lord, A. H. Wang, A. Rich: The high salt form of poly(dG-dC)•poly(dG-dC) is left-handed Z-DNA: Raman spectra of crystals and solutions. In: Nucleic Acids Research. 9, Nr. 20, 1981, S. 5443–5457, PMID 7301594.
  3. Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, Van der Marel G, Rich A: Molecular structure of a left-handed double helical DNA fragment at atomic resolution. In: Nature (London). 282, 1979, S. 680–686. PMID 514347.
  4. a b  Sung Chul Ha, Ky Lowenhaupt, Alexander Rich, Yang-Gyun Kim, Kyeong Kyu Kim: Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. In: Nature. 437, Nr. 7062, 2005, S. 1183–1186, doi:10.1038/nature04088, PMID 16237447.
  5.  P. Christoph Champ, Sandor Maurice, Jeffrey M. Vargason, Tracy Camp, P. Shing Ho: Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. In: Nucleic Acids Research. 32, Nr. 22, 2004, S. 6501–6510, doi:10.1093/nar/gkh988, PMID 15598822.