Benutzer:Scabba/Artificial enzyme

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

...

Schemazeichnung einer künstlichen Phosphorylase

Ein künstliches Enzym ist ein synthetisches organisches Molekül oder Ion, das einige Funktionen eines Enzyms nachbilden kann. The area promises to deliver catalysis at rates and selectivity observed in many enzymes.

History[Bearbeiten | Quelltext bearbeiten]

Enzyme catalysis of chemical reactions occur with high selectivity and rate. The substrate is activated in a small part of the enzyme's macromolecule called the active site. There, the binding of a substrate close to functional groups in the enzyme causes catalysis by so-called proximity effects. It is possible to create similar catalysts from small molecule by combining substrate-binding with catalytic functional groups. Classically artificial enzymes bind substrates using receptors such as cyclodextrin, crown ethers, and calixarene.[1][2]

Artificial enzymes based on amino acids or peptides as characteristic molecular moieties have expanded the field of artificial enzymes or enzyme mimics. For instance, scaffolded histidine residues mimics certain metalloproteins and -enzymes such as hemocyanin, tyrosinase, and catechol oxidase).[3]

Artificial enzymes have been designed from scratch via a computational strategy using Rosetta.[4] In December 2014, it was announced that active enzymes had been produced that were made from artificial molecules which do not occur anywhere in nature.[5] In 2017, a book chapter entitled "Artificial Enzymes: The Next Wave" was published.[1]

Nanozymes[Bearbeiten | Quelltext bearbeiten]

Nanozymes are nanomaterials with enzyme-like characteristics.[6] They have been widely explored for various applications, such as biosensing, bioimaging, tumor diagnosis and therapy, antibiofouling.[7][8][9][10][11]

1990s[Bearbeiten | Quelltext bearbeiten]

In 1996 and 1997, Dugan et al. discovered the superoxide dismutase (SOD) mimicking activities of fullerene derivatives.[12][13]

2000s[Bearbeiten | Quelltext bearbeiten]

In 2004, the term "nanozymes" was coined by Flavio Manea, Florence Bodar Houillon, Lucia Pasquato, and Paolo Scrimin.[14] In 2006, nanoceria (i.e., CeO2 nanoparticles) was used for preventing retinal degeneration induced by intracellular peroxides.[15][16] In 2007, Xiyun Yan and coworkers reported that ferromagnetic nanoparticles possessed intrinsic peroxidase-like activity.[17][18] In 2008, Hui Wei and Erkang Wang developed an iron oxide nanozyme based sensing platform for bioactive molecules (such as hydrogen peroxide and glucose).[19]

2010s[Bearbeiten | Quelltext bearbeiten]

In 2012, recombinant human heavy-chain ferritin coated iron oxide nanoparticle with peroxidase-like activity was prepared and used for targeting and visualizing tumour tissues.[20] In 2012, vanadium pentoxide nanoparticles with vanadium haloperoxidase mimicking activities were used for preventing marine biofouling.[21] In 2014, it was demonstrated that carboxyfullerene could be used to treat neuroprotection postinjury in Parkinsonian nonhuman primates.[22] In 2015, a supramolecular regulation strategy was proposed to modulate the activity of gold-based nanozymes for imaging and therapeutic applications.[23][24] A nanozyme-strip for rapid local diagnosis of Ebola was developed.[25][26] Nanoceria nanozymes were used for DNA sensing.[27] An integrated nanozyme has been developed for real time monitoring the dynamic changes of cerebral glucose in living brains.[28][29] Cu(OH)2 nanozymes with peroxidase-like activities were reported.[30] Ionic FePt, Fe3O4, Pd, and CdSe NPs with peroxidase-like activities were reported.[31] A book entitled "Nanozymes: Next Wave of Artificial Enzymes" was published.[32] A book chapter entitled "Nanozymes" in the book of "Enzyme Engineering" was published (in Chinese).[33] Oxidase-like nanoceria has been used for developing self-regulated bioassays.[34] Histidine was used to modulate iron oxide nanoparticles' peroxidase mimicking activities.[35] Gold nanoparticles' peroxidase mimicking activities were modulated via a supramolecular strategy for cascade reactions.[36] A molecular imprinting strategy was developed to improve the selectivity of Fe3O4 nanozymes with peroxidase-like activity.[37] A new strategy was developed to enhance the peroxidase mimicking activity of gold nanoparticles by using hot electrons.[38] Researchers have designed gold nanoparticles (AuNPs) based integrative nanozymes with both SERS and peroxidase mimicking activities for measuring glucose and lactate in living tissues.[39] Cytochrome c oxidase mimicking activity of Cu2O nanoparticles was modulated by receiving electrons from cytochrome c.[40] Fe3O4 NPs were combined with glucose oxidase for tumor therapeutics.[41] Manganese dioxide nanozymes have been used as cytoprotective shells.[42] Mn3O4 Nanozyme for Parkinson's Disease (cellular model) was reported.[43] Heparin elimination in live rats has been monitored with 2D MOF based peroxidase mimics and AG73 peptide.[44] Glucose oxidase and iron oxide nanozymes were encapsulated within multi-compartmental hydrogels for incompatible tandem reactions.[45] A cascade nanozyme biosensor was developed for detection of viable Enterobacter sakazakii.[46] An integrated nanozyme of GOx@ZIF-8(NiPd) was developed for tandem catalysis.[47]

Conferences[Bearbeiten | Quelltext bearbeiten]

Several conferences have focused on nanozymes. In 2015, a nanozyme workshop for was held at the 9th Asian Biophysics Associatation (ABA) Symposium.[48] In Pittcon 2016, a Networking entitled "Nanozymes in Analytical Chemistry and Beyond" was devoted to nanozymes.[49] An Xiangshan Science Conference was devoted to nanozyme research.[50][51] A scientific session was devoted to "Biomimetic Nanocatalysis" in 15th Chinese Biophysics Congress.[52]

See also[Bearbeiten | Quelltext bearbeiten]

References[Bearbeiten | Quelltext bearbeiten]

Vorlage:Reflist

Category:Enzymes Category:Synthetic biology Category:Nanotechnology

  1. Wiley: Artificial Enzymes - Ronald Breslow. In: as.wiley.com. Abgerufen am 11. Dezember 2015.
  2. Anthony J Kirby, Florian Hollfelder: From Enzyme Models to Model Enzymes. 2009, ISBN 978-0-85404-175-6, doi:10.1039/9781847559784 (rsc.org).
  3. Scaffolded amino acids as a close structural mimic of type-3 copper binding sites. H. Bauke Albada, Fouad Soulimani, Bert M. Weckhuysen and Rob M. J. Liskamp, Chem. Commun., 2007, pages 4895-4897, doi:10.1039/B709400K
  4. Daniela Röthlisberger, Olga Khersonsky, Andrew M. Wollacott, Lin Jiang, Jason DeChancie, Jamie Betker, Jasmine L. Gallaher, Eric A. Althoff, Alexandre Zanghellini: Kemp elimination catalysts by computational enzyme design. In: Nature. 453. Jahrgang, Nr. 7192, 8. Mai 2008, ISSN 0028-0836, S. 190–195, doi:10.1038/nature06879, bibcode:2008Natur.453..190R (englisch, nature.com).
  5. World’s first artificial enzymes created using synthetic biology. University of Cambridge, 1. Dezember 2014, abgerufen am 14. Dezember 2016.
  6. Hui Wei, Erkang Wang: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. In: Chemical Society Reviews. 42. Jahrgang, Nr. 14, 21. Juni 2013, ISSN 1460-4744, S. 6060, doi:10.1039/C3CS35486E (englisch, rsc.org).
  7. 阎���蕴: 纳米材料新特性及生物医学应用. 第1版 Auflage. 科学出版社, 北京, ISBN 978-7-03-041828-9 (amazon.cn).
  8. Zerong Wang: Encyclopedia of Physical Organic Chemistry, 5 Volume Set. Edición: Volumes 1 - 5. Auflage. John Wiley & Sons Inc, Place of publication not identified, ISBN 978-1-118-47045-9 (amazon.es).
  9. Nanozyme brief history.
  10. Xiaoyu Wang, Yihui Hu, Hui Wei: Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. In: Inorg. Chem. Front. 3. Jahrgang, Nr. 1, S. 41–60, doi:10.1039/c5qi00240k (englisch, doi.org).
  11. Demin Duan, Kelong Fan, Dexi Zhang, Shuguang Tan, Mifang Liang, Yang Liu, Jianlin Zhang, Panhe Zhang, Wei Liu: Nanozyme-strip for rapid local diagnosis of Ebola. In: Biosensors and Bioelectronics. 74. Jahrgang, S. 134–141, doi:10.1016/j.bios.2015.05.025 (doi.org).
  12. Laura L. Dugan, Joseph K. Gabrielsen, Shan P. Yu, Tien-Sung Lin, Dennis W. Choi: Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons. In: Neurobiology of Disease. 3. Jahrgang, Nr. 2, 1. April 1996, S. 129–135, doi:10.1006/nbdi.1996.0013 (sciencedirect.com).
  13. Laura L. Dugan, Dorothy M. Turetsky, Cheng Du, Doug Lobner, Mark Wheeler, C. Robert Almli, Clifton K.-F. Shen, Tien-Yau Luh, Dennis W. Choi: Carboxyfullerenes as neuroprotective agents. In: Proceedings of the National Academy of Sciences. 94. Jahrgang, Nr. 17, 19. August 1997, ISSN 0027-8424, S. 9434–9439, doi:10.1073/pnas.94.17.9434, PMID 9256500, PMC 23208 (freier Volltext), bibcode:1997PNAS...94.9434D (englisch, pnas.org).
  14. Flavio Manea, Florence Bodar Houillon, Lucia Pasquato, Paolo Scrimin: Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. In: Angewandte Chemie International Edition. 43. Jahrgang, Nr. 45, 19. November 2004, ISSN 1521-3773, S. 6165–6169, doi:10.1002/anie.200460649 (englisch, wiley.com).
  15. Junping Chen, Swanand Patil, Sudipta Seal, James F. McGinnis: Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:. In: Nature Nanotechnology. 1. Jahrgang, Nr. 2, 1. November 2006, ISSN 1748-3387, S. 142–150, doi:10.1038/nnano.2006.91, bibcode:2006NatNa...1..142C (englisch, nature.com).
  16. Gabriel A. Silva: Nanomedicine: Seeing the benefits of ceria. In: Nature Nanotechnology. 1. Jahrgang, Nr. 2, 1. November 2006, ISSN 1748-3387, S. 92–94, doi:10.1038/nnano.2006.111, bibcode:2006NatNa...1...92S (englisch, nature.com).
  17. Lizeng Gao, Jie Zhuang, Leng Nie, Jinbin Zhang, Yu Zhang, Ning Gu, Taihong Wang, Jing Feng, Dongling Yang: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. In: Nature Nanotechnology. 2. Jahrgang, Nr. 9, 1. September 2007, ISSN 1748-3387, S. 577–583, doi:10.1038/nnano.2007.260, bibcode:2007NatNa...2..577G (englisch, nature.com).
  18. J. Manuel Perez: Iron oxide nanoparticles: Hidden talent. In: Nature Nanotechnology. 2. Jahrgang, Nr. 9, 1. September 2007, ISSN 1748-3387, S. 535–536, doi:10.1038/nnano.2007.282, bibcode:2007NatNa...2..535P (englisch, nature.com).
  19. Hui Wei, Erkang Wang: Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. In: Analytical Chemistry. 80. Jahrgang, Nr. 6, 15. März 2008, ISSN 0003-2700, S. 2250–2254, doi:10.1021/ac702203f, PMID 18290671 (doi.org).
  20. Kelong Fan, Changqian Cao, Yongxin Pan, Di Lu, Dongling Yang, Jing Feng, Lina Song, Minmin Liang, Xiyun Yan: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. In: Nature Nanotechnology. 7. Jahrgang, Nr. 7, 1. Juli 2012, ISSN 1748-3387, S. 459–464, doi:10.1038/nnano.2012.90, bibcode:2012NatNa...7..459F (englisch, nature.com).
  21. Filipe Natalio, Rute André, Aloysius F. Hartog, Brigitte Stoll, Klaus Peter Jochum, Ron Wever, Wolfgang Tremel: Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. In: Nature Nanotechnology. 7. Jahrgang, Nr. 8, 1. August 2012, ISSN 1748-3387, S. 530–535, doi:10.1038/nnano.2012.91, bibcode:2012NatNa...7..530N (englisch, nature.com).
  22. Laura L. Dugan, LinLin Tian, Kevin L. Quick, Josh I. Hardt, Morvarid Karimi, Chris Brown, Susan Loftin, Hugh Flores, Stephen M. Moerlein: Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates. In: Annals of Neurology. 76. Jahrgang, Nr. 3, 1. September 2014, ISSN 1531-8249, S. 393–402, doi:10.1002/ana.24220, PMID 25043598, PMC 4165715 (freier Volltext) – (englisch, wiley.com).
  23. Gulen Yesilbag Tonga, Youngdo Jeong, Bradley Duncan, Tsukasa Mizuhara, Rubul Mout, Riddha Das, Sung Tae Kim, Yi-Cheun Yeh, Bo Yan: Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. In: Nature Chemistry. 7. Jahrgang, Nr. 7, 1. Juli 2015, ISSN 1755-4330, S. 597–603, doi:10.1038/nchem.2284, bibcode:2015NatCh...7..597T (englisch, nature.com).
  24. Asier Unciti-Broceta: Bioorthogonal catalysis: Rise of the nanobots. In: Nature Chemistry. 7. Jahrgang, Nr. 7, 1. Juli 2015, ISSN 1755-4330, S. 538–539, doi:10.1038/nchem.2291, bibcode:2015NatCh...7..538U (englisch, nature.com).
  25. Demin Duan, Kelong Fan, Dexi Zhang, Shuguang Tan, Mifang Liang, Yang Liu, Jianlin Zhang, Panhe Zhang, Wei Liu: Nanozyme-strip for rapid local diagnosis of Ebola. In: Biosensors and Bioelectronics. 74. Jahrgang, 15. Dezember 2015, S. 134–141, doi:10.1016/j.bios.2015.05.025 (sciencedirect.com).
  26. Elsevier: New Ebola test to make diagnosis easier, faster and cheaper. In: www.elsevier.com. Abgerufen am 10. Juni 2016.
  27. Biwu Liu, Ziyi Sun, Po-Jung Jimmy Huang, Juewen Liu: Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. In: Journal of the American Chemical Society. 137. Jahrgang, Nr. 3, 28. Januar 2015, ISSN 0002-7863, S. 1290–1295, doi:10.1021/ja511444e (doi.org).
  28. Hanjun Cheng, Lei Zhang, Jian He, Wenjing Guo, Zhengyang Zhou, Xuejin Zhang, Shuming Nie, Hui Wei: Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. In: Analytical Chemistry. 88. Jahrgang, 12. April 2016, ISSN 0003-2700, S. 5489–5497, doi:10.1021/acs.analchem.6b00975, PMID 27067749 (doi.org).
  29. Integrated nanozymes for brain chemistry. In: phys.org. Abgerufen am 17. April 2016.
  30. Ren Cai, Dan Yang, Shengjie Peng, Xigao Chen, Yun Huang, Yuan Liu, Weijia Hou, Shengyuan Yang, Zhenbao Liu: Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System. In: Journal of the American Chemical Society. 137. Jahrgang, Nr. 43, 4. November 2015, ISSN 0002-7863, S. 13957–13963, doi:10.1021/jacs.5b09337 (doi.org).
  31. Yuan Liu, Daniel L. Purich, Cuichen Wu, Yuan Wu, Tao Chen, Cheng Cui, Liqin Zhang, Sena Cansiz, Weijia Hou: Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties. In: Journal of the American Chemical Society. 137. Jahrgang, Nr. 47, 2. Dezember 2015, ISSN 0002-7863, S. 14952–14958, doi:10.1021/jacs.5b08533 (doi.org).
  32. Nanozymes: Next Wave of Artificial Enzymes | Xiaoyu Wang | Springer. (springer.com).
  33. 副 罗贵民 主编 高仁钧 李正强: 酶工程(第3版). 第3版 Auflage. 化学工业出版社, 2016, ISBN 7-122-25760-6 (amazon.cn).
  34. Hanjun Cheng, Shichao Lin, Faheem Muhammad, Ying-Wu Lin, Hui Wei: Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. In: ACS Sensors. 1. Jahrgang, 25. Oktober 2016, S. 1336–1343, doi:10.1021/acssensors.6b00500 (doi.org).
  35. Kelong Fan, Hui Wang, Juqun Xi, Qi Liu, Xiangqin Meng, Demin Duan, Lizeng Gao, Xiyun Yan: Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. In: Chemical Communications. ISSN 1364-548X, doi:10.1039/C6CC08542C (englisch, rsc.org).
  36. Yan Zhao, Hui Zhu, Qingqing Zhu, Yucheng Huang, Yunsheng Xia: Three-in-One: Sensing, Self-Assembly and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles. In: Journal of the American Chemical Society. 138. Jahrgang, 7. Dezember 2016, ISSN 0002-7863, S. 16645–16654, doi:10.1021/jacs.6b07590 (doi.org).
  37. Zijie Zhang, Xiaohan Zhang, Biwu Liu, Juewen Liu: Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity. In: Journal of the American Chemical Society. 139. Jahrgang, 27. März 2017, ISSN 0002-7863, S. 5412–5419, doi:10.1021/jacs.7b00601 (doi.org).
  38. ?
  39. Yihui Hu, Hanjun Cheng, Xiaozhi Zhao, Jiangjiexing Wu, Faheem Muhammad, Shichao Lin, Jian He, Liqi Zhou, Chengping Zhang: Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. In: ACS Nano. 11. Jahrgang, Nr. 6, 27. Juni 2017, ISSN 1936-0851, S. 5558–5566, doi:10.1021/acsnano.7b00905 (doi.org).
  40. Ming Chen, Zhonghua Wang, Jinxia Shu, Xiaohui Jiang, Wei Wang, Zhen-Hua Shi, Ying-Wu Lin: Mimicking a Natural Enzyme System: Cytochrome c Oxidase-Like Activity of Cu2O Nanoparticles by Receiving Electrons from Cytochrome c. In: Inorganic Chemistry. 28. Juli 2017, ISSN 0020-1669, doi:10.1021/acs.inorgchem.7b01393 (doi.org).
  41. Minfeng Huo, Liying Wang, Yu Chen, Jianlin Shi: Tumor-selective catalytic nanomedicine by nanocatalyst delivery. In: Nature Communications. 8. Jahrgang, Nr. 1, 25. August 2017, ISSN 2041-1723, doi:10.1038/s41467-017-00424-8 (englisch, nature.com).
  42. Wei Li, Zhen Liu, Chaoqun Liu, Yijia Guan, Jinsong Ren, Xiaogang Qu: Manganese Dioxide Nanozymes as Intelligent Cytoprotective Shells for Individual Living Cell Encapsulation. In: Angewandte Chemie International Edition. ISSN 1521-3773, S. n/a–n/a, doi:10.1002/anie.201706910 (englisch, wiley.com).
  43. Govindasamy Mugesh, Namrata Singh, Mohammed Azharuddin Savanur, Shubhi Srivastava, Patrick D’Silva: Redox Modulatory Mn3O4 Nanozyme with Multi-enzyme Activity Provides Efficient Cytoprotection to Human Cells in Parkinson's Disease Model. In: Angewandte Chemie International Edition. ISSN 1521-3773, S. n/a–n/a, doi:10.1002/anie.201708573 (englisch, wiley.com).
  44. Hanjun Cheng, Yufeng Liu, Yihui Hu, Yubin Ding, Shichao Lin, Wen Cao, Qian Wang, Jiangjiexing Wu, Faheem Muhammad: Monitoring of Heparin Activity in Live Rats Using Metal-Organic Framework Nanosheets as Peroxidase Mimics. In: Analytical Chemistry. 10. Oktober 2017, ISSN 0003-2700, doi:10.1021/acs.analchem.7b02895 (doi.org).
  45. Hongliang Tan, Song Guo, Ngoc-Duy Dinh, Rongcong Luo, Lin Jin, Chia-Hung Chen: Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. In: Nature Communications. 8. Jahrgang, Nr. 1, 22. September 2017, ISSN 2041-1723, doi:10.1038/s41467-017-00757-4 (englisch, nature.com).
  46. Li Zhang, Yuting Chen, Nan Cheng, Yuancong Xu, Kunlun Huang, Yunbo Luo, Peixia Wang, Demin Duan, Wentao Xu: Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor. In: Analytical Chemistry. 89. Jahrgang, Nr. 19, S. 10194–10200, doi:10.1021/acs.analchem.7b01266 (englisch, acs.org).
  47. Qingqing Wang, Xueping Zhang, Liang Huang, Zhiquan Zhang, Shaojun Dong: GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. In: Angewandte Chemie International Edition. ISSN 1521-3773, S. n/a–n/a, doi:10.1002/anie.201710418 (englisch, wiley.com).
  48. Workshop for nanozymes.
  49. Nanozymes at Pittcon 2016.
  50. xhma@cashq.ac.cn: 香山科学会议. In: www.xssc.ac.cn. Abgerufen am 22. September 2017 (englisch).
  51. 阎锡蕴院士牵头主持“纳米酶”香山科学会议(第606次).
  52. 15th Chinese Biophysics Congress | November 3-6, 2017, Shanghai, China. In: 2017icbc.bsc.org.cn. Abgerufen am 22. September 2017 (englisch).