Polare Menge

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Bipolarensatz)
Zur Navigation springen Zur Suche springen

Die polare Menge oder die Polare einer Menge ist ein Begriff aus dem mathematischen Teilgebiet der Funktionalanalysis. Dabei wird einer Menge eines Vektorraums eine Menge des Dualraums zugeordnet und umgekehrt.

Definition[Bearbeiten | Quelltext bearbeiten]

Ist ein normierter Raum oder allgemeiner ein lokalkonvexer Raum mit Dualraum und ist eine Teilmenge, so nennt man

die Polare von [1].

Ist , so setzt man

und nennt dies die Polare von . Häufig findet man auch hierfür die Schreibweise und nimmt die damit einhergehende Mehrdeutigkeit in Kauf, denn nach obiger Definition wäre eine Teilmenge des Bidualraums .

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Die Polare der Einheitskugel eines normierten Raums ist die Einheitskugel des Dualraums.
  • Ist ein Untervektorraum, so ist der Annullator von .

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Für Mengen gilt:

  • Aus folgt
  • Für alle gilt
  • für eine Familie von Teilmengen
  • ist absolutkonvex und schwach-*-abgeschlossen.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Die wichtigsten Sätze über polare Mengen sind:

  • Bipolarensatz[2] : Ist , so ist die absolutkonvexe, schwach-*-abgeschlossene Hülle von .

Ist also absolutkonvex und schwach-*-abgeschlossen, so gilt . Dies kann als einfache Folge aus dem Trennungssatz angesehen werden.

Mittels polarer Mengen lassen sich einige lokalkonvexe Topologien recht einfach beschreiben[4]:

  • Die Menge aller Polaren aller endlichen Mengen des Dualraums bildet eine Nullumgebungsbasis der schwachen Topologie auf .
  • Die Menge aller Polaren aller endlichen Mengen des Vektorraums bildet eine Nullumgebungsbasis der schwach-*-Topologie auf
  • Die Menge aller Polaren aller absolutkonvexen, schwach-*-kompakten Teilmengen des Dualraums bildet eine Nullumgebungsbasis der Mackey-Topologie auf .
  • Die Menge aller Polaren aller schwach-*-beschränkten Teilmengen des Dualraums bildet eine Nullumgebungsbasis der so genannten starken Topologie auf .

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992, ISBN 3-528-07262-8, §6, §22
  2. H. Heuser: Funktionalanalysis, Teubner-Verlag (2006), ISBN 3-8351-0026-2, Satz 67.2
  3. R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992, ISBN 3-528-07262-8, Satz 23.5
  4. R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992, ISBN 3-528-07262-8, § 23