Elektronenstrahl

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Ein Elektronenstrahl, sichtbar gemacht als violette Spur durch Stöße mit verdünntem Gas und zu einem Kreis umgelenkt durch ein Magnetfeld

Ein Elektronenstrahl, früher auch Kathodenstrahl, ist ein technisch erzeugtes Strahlenbündel aus Elektronen. Da Elektronen in der Luft der Atmosphäre sehr schnell ihre Energie verlieren, benötigen Elektronenstrahlen ein Vakuum, oder zumindest einen deutlich gegenüber der Atmosphäre verminderten Gasdruck.

Elektronenstrahlen bilden die Grundlage für die Bildröhren, mit der lange Zeit Fernseher, Computermonitore, oder Oszilloskope betrieben wurden.

Erzeugung[Bearbeiten | Quelltext bearbeiten]

Technisch erzeugte Strahlenbündel von Elektronen werden als Elektronenstrahl bezeichnet. Die Strahlerzeugung erfolgt technisch meist mit einer Elektronenkanone, einem Strahlensystem, wie es auch in der Kathodenstrahlröhre (Braunschen Röhre und Bildröhre) vorkommt. Die Elektronen werden aus einer Glühkathode freigesetzt und durch ein elektrisches Feld beschleunigt. Eine weitere Beschleunigung kann mit Teilchenbeschleunigern (Linearbeschleuniger, Betatron, Mikrotron, Synchrotron) erfolgen.

Bei der Entdeckung der Kathodenstrahlen traten Strahlen durch eine Öffnung in einer der Kathode gegenüberliegenden (positiven) Anode aus und verursachten Leuchterscheinungen. Man bezeichnete diese offensichtlich von der Kathode ausgehenden Strahlen daher als Kathodenstrahlen. Die bei kalter Kathode entstehenden Strahlen einer Gasentladung bezeichnete man demgegenüber als Kanalstrahlen. Erst später erkannte man, dass erstere aus Elektronen und letztere aus (positiven) Ionen bestanden.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Eine Schattenkreuzröhre
Schattenkreuzröhre in Betrieb. Auf der linksn Seite der Röhre ist in der Leuchterscheinung ein Schatten der kreuzförmigen Anode zu sehen.
Durch ein Magnetfeld wird der Schatten der Anode verschoben -- in diesem Fall nach unten.

Die Untersuchungen wurden stimuliert durch die Suche nach den kleinsten Teilchen der Elektrizität, wie sie nach den Faradayschen Gesetzen existieren sollten. Man untersuchte deshalb elektrische Vorgänge in verdünnten Gasen und fand dabei Leuchterscheinungen. Julius Plücker verwendete Gasentladungsröhren, in denen Kathoden erhitzt wurden. Er und sein Schüler Johann Hittorf stellten fest, dass

  1. sich aus den Kathoden eine Art elektrischer Strahlung geradlinig ausbreitete,
  2. dazwischen gestellte Gegenstände einen Schatten werfen,
  3. sich die Strahlung durch ein Magnetfeld ablenken ließ.

William Crookes, der für diese Untersuchungen die Schattenkreuzröhre erfand, stellte 1879 fest, dass diese Strahlen auch in hoch evakuierten Röhren auftraten, in denen ansonsten keine Leuchterscheinungen der Gasentladung mehr zu erkennen waren. Außerdem erkannte er, dass sie Festkörper erwärmt und einen Druck ausübt. Dies führte zur Erkenntnis, dass Kathodenstrahlen aus Teilchen bestehen.

Erstmals wurden Kathodenstrahlen systematisch von Philipp Lenard in den 90er Jahren des 19. Jahrhunderts untersucht. Er baute hierfür das so genannte Lenard-Fenster, das aus einem Gitter mit einer aufgebrachten Metallfolie bestand. Er erkannte, dass die Kathodenstrahlen eine Folie aus mehreren tausend Atomschichten durchqueren konnten. Lenard erkannte ebenfalls, dass Kathodenstrahlen Fotoplatten belichteten und bei geeigneten Stoffen Phosphoreszenz hervorrufen.

Beschleunigung und Ablenkung[Bearbeiten | Quelltext bearbeiten]

Ein Elektronenstrahl besteht aus schnell bewegten, elektrisch geladenen Teilchen, den Elektronen. Elektronen tragen jeweils eine elektrische Elementarladung. Damit repräsentiert der Elektronenstrahl einen elektrischen Strom. Wie jeder elektrische Strom erzeugt ein Elektronenstrahl ein Magnetfeld. Wegen der elektrischen Ladung der Elektronen lässt sich die Bahn des Elektronenstrahls sowohl mit elektrischen als auch mit Magnetfeldern beeinflussen.

Mit geeignet angeordneten unter elektrischer Spannung stehenden Elektroden, oder von elektrischem Strom durchflossenen Spulen kann der Strahl abgelenkt werden. Elektroden eignen sich außerdem dafür, die Elektronen zu beschleunigen oder zu bremsen. Man spricht dann von einem beschleunigten, oder abgebremsten Elektronenstrahl. Neben der Geschwindigkeit kann mit Elektroden auch die Divergenz des Strahls beeinflusst werden. Die für die Aufweitung, oder Fokussiung des Strahls eingesetzten Elektroden bilden die Elektronenoptik.

Die Beschleunigung von elektrischen Ladungen ist unvermeidlich mit der Abgabe von Bremsstrahlung verbunden. Dies wird in Undulatoren ausgenutzt, um sehr kurzwellige elektromagnetische Strahlung zu erzeugen. Da die Energie der Bremsstrahlung der kinetischen Energie der Elektronen verloren geht, ist die Bremsstrahlung ein begrenzender Faktor bei der Auslegung von Synchrotrons und anderen Anlagen, die Elektronen auf sehr hohe kinetische Energie bringen.

Streugesetz[Bearbeiten | Quelltext bearbeiten]

Lenard fand das Streugesetz:

N(x) = N_0 e^{-\alpha \cdot x}

mit:

N_0 = Zahl der Elektronen vor der Folie, \alpha = Absorptionskoeffizient, x = Foliendicke.

Es gab vielerlei Versuche, die Masse der Teilchen zu bestimmen, aus denen die Kathodenstrahlen bestanden. Dies jedoch gelang erst Joseph John Thomson (1856–1940). Thomson setzte ein stark verbessertes Vakuum ein und konnte das Verhältnis der Ladung zur Masse durch elektrostatische Ablenkung der Kathodenstrahlen bestimmen.

Anwendungsbereiche[Bearbeiten | Quelltext bearbeiten]

Die erste nennenswerte technische Anwendung fand die Elektronenstrahlung als gerichtetes Strahlenbündel in der Braunschen Röhre, die von Karl Ferdinand Braun 1897 entwickelt wurde. Der Kathodenstrahl wird auf einem fluoreszierenden Schirm im Innern der Röhre sichtbar, wenn er auf diesen auftrifft. Anwendungen sind der Kathodenstrahloszillograph und die Bildröhre.

Beschleunigte gepulste abgelenkte Elektronenstrahlen mit relativistischer Geschwindigkeit dienen an Synchrotrons u. a. als Quelle für elektromagnetische Strahlung (Synchrotronstrahlung) vom Infraroten bis zu weicher Gammastrahlung (siehe auch Freie-Elektronen-Laser).

Elektronenstrahlen wechselwirken stark mit Materie, so erhitzt sich beispielsweise ein Festkörper, wenn er mit Elektronenstrahlen bestrahlt wird. Ausgenutzt wird dies unter anderem zum Aufschmelzen von Materialien beispielsweise beim Elektronenstrahlschmelzen oder als Heizer beim Elektronenstrahlverdampfer. Über eine entsprechende Strahlführung lassen sich auch Strukturen im Mikrometerbereich leicht beeinflussen, z. B. Widerstandsabgleich.

In der Metallbearbeitung werden Elektronenstrahlen hoher Leistung (Größenordnung 100 kW) zum Schmelzen, Härten, Glühen, Bohren, Gravieren und Schweißen eingesetzt. Die Bearbeitung geschieht meist im Vakuum (mindestens 10−2 mbar). Beim Elektronenstrahlschweißen an Atmosphärendruck (engl. non-vacuum electron beam welding, NVEBW) kann ein Elektronenstrahlschweißvorgang jedoch auch unter Normaldruck geschehen. Hier muss der Arbeitsabstand zwischen Strahlaustritt und Werkstück zwischen 6 und 30 mm liegen, der Übergang vom Hochvakuum zum Atmosphärendruck geschieht dann über mehrere Druckstufen. Beim WIG-Schweißen wird ebenfalls ein Elektronenstrahl verwendet.

Den Elektronen eines Elektronenstrahles lassen sich nach Louis de Broglie entsprechend ihrer Energie auch Wellenlängen zuordnen, sie sind aber selbst keine elektromagnetische Welle. Ihre De-Broglie-Wellenlänge liegt für typische Energien dabei weit unterhalb eines Nanometers. Elektronenstrahlen weisen daher keine Einschränkungen des Auflösungsvermögens aufgrund von Beugungserscheinungen auf. Aufgrund der ausgeprägten Wechselwirkung mit Materie werden Elektronen zur Abbildung und Analyse der inneren Struktur und der Oberfläche von Festkörpern eingesetzt (siehe Elektronenmikroskop, Photoelektronenspektroskopie und Elektronenstrahlmikroanalyse). Sie eignen sich auch zur Herstellung feinster Strukturen im Nanometerbereich, beispielsweise bei der Elektronenstrahllithografie.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Elektronenstrahl – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
  • fizkapu.hu: Katódsugarak - Animation der Bildern (Kathodenstrahlen durch ein Magnetfeld 1–4.)