Hankel-Matrix

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Besetzungsmuster einer Hankel-Matrix der Größe 5×5

Eine Hankel-Matrix, benannt nach Hermann Hankel (1839–1873), bezeichnet eine Matrix, bei der auf jeder von rechts oben nach links unten verlaufenden Gegendiagonalen jeweils nur ein konstanter Wert auftritt.[1] Sie ist also durch die oberste Zeile und die äußerste rechte Spalte der Matrix vollständig beschrieben.

Eine quadratische Hankel-Matrix ist eine symmetrische Matrix. Die Dimension des Vektorraums der Hankel-Matrizen ist .

Diese Vereinfachung erlaubt ebenso wie bei den verwandten Toeplitz-Matrizen den Einsatz besonders effizienter Verfahren für Matrixoperationen wie Multiplikation und Inversion.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Hier ein Beispiel einer -Hankel-Matrix:

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Hankel-Matrix. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.