Random-Phase-Approximation

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Random-Phase-Approximation (englisch random-phase approximation, RPA, dt. etwa ‚Näherung zufälliger Phase‘) ist ein Näherungsverfahren zur Behandlung quantenmechanischer Vielteilchensysteme, das die Hartree-Fock-Näherung oder allgemeiner die Molekularfeldtheorie generalisiert und manchmal auch als dynamische Hartree-Fock-Näherung bezeichnet wird. Das Verfahren wird beispielsweise in der Kernphysik zur Beschreibung von kollektiven Anregungen benutzt.

Sog. Bubble-Diagramme, die bei Aufsummation die RPA ergeben.
Duchgezogene Linien stehen hier für wechselwirkende bzw. nicht-wechselwirkende greensche Funktionen, gestrichelte Linien für Zwei-Teilchen-Wechselwirkungen.

Die RPA ist ein mikroskopisches Verfahren, um die Struktur von kollektiven Anregung ausgehend von 1-Teilchen-1-Loch-Zuständen zu beschreiben, was einer einfachen diagramatischen Näherung entspricht (Aufsummation sogenannter Bubble-Diagramme).

Die Methode ist verwandt mit der Tamm-Dancoff-Näherung (TDA), unterscheidet sich aber dadurch, dass auch Grundzustandskorrelationen möglich sind.

Spezialfälle sind die quasiparticle random-phase approximation (QRPA), relativistic random-phase approximation (RRPA), continuum quasiparticle random-phase approximation (CQRPA), relativistic quasiparticle random-phase approximation (RQRPA).

Die Methode wurde von David Bohm und David Pines in den 1950er Jahren für Elektronengase eingeführt[1][2][3] und 1957 von Keith Brueckner und Murray Gell-Mann als Summierung von Feynmandiagrammen interpretiert[4], was eine wesentliche Stütze der damals umstrittenen RPA-Theorie war.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1.  David Bohm, David Pines: A Collective Description of Electron Interactions. I. Magnetic Interactions. In: Physical Review. 82, Nr. 5, 1951, S. 625–634, doi:10.1103/PhysRev.82.625.
  2.  David Pines, David Bohm: A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions. In: Physical Review. 85, Nr. 2, 1952, S. 338–353, doi:10.1103/PhysRev.85.338.
  3.  David Bohm, David Pines: A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas. In: Physical Review. 92, Nr. 3, 1953, S. 609–625, doi:10.1103/PhysRev.92.609.
  4.  Murray Gell-Mann, Keith A. Brueckner: Correlation Energy of an Electron Gas at High Density. In: Physical Review. 106, Nr. 2, 1957, S. 364–368, doi:10.1103/PhysRev.106.364.